• Title/Summary/Keyword: High Tc HTS

Search Result 103, Processing Time 0.025 seconds

Construction and Tests of 700A class HTS Power Cable Core (700A급 고온초전도 케이블코아 제작 및 평가)

  • 조전욱;하홍수;정종만;조영식;성기철;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.55-57
    • /
    • 2000
  • In this paper we present the results of tests for the high-Tc superconducting (HTS) power cable core. A prototype HTS cable cores have been constructed using Bi-2223 based Ag-sheathed HTS tapes. HTS cable cores has been tested at 77K with DC currents. Results shows that the cable cores carrying up to 700A DC and self-field effects are discussed.

  • PDF

HTS antenna array with circularly polarization for DBS receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나)

  • 정동철;윤희중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.294-297
    • /
    • 2003
  • In this paper we designed and measured HTS antenna array for Direct Broadcast Satellite (DBS) system. HTS antennas fabricated in this work were a four-element, 11.67 ㎓z, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcas- ting satellite (DBS) system. Our antennas was designed and built on a 0.5 mm thick YBa2Cu3O7-x (YBCO) /MgO substrate. The measurement results showed good axial ratio, wide bandwidth a remarkable improvement over their metal counterpart.

  • PDF

Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication (위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석)

  • 정동철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.573-577
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle -radiation patches using a $YBa_2Cu_3O_{7-X}$ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85 % to 1.1 %. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite to satellite communications. The bandwidth obtained was a significant 6.7 % and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication (위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석)

  • 정동철;최명호;황종선;강형곤;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.523-526
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle-radiation patches using a YBa$_2$Cu$_3$O$\sub$7-x/ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85% to 1.1%. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite-to-satellite communications. The bandwidth obtained was a significant 6.7% and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

  • PDF

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

Electrical Properties of HTS Using Chemical Process (Bi 소결체의 전기적 특성)

  • Lee, Sang-Heon;Choi, Yong;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.34-35
    • /
    • 2007
  • A high Tc superconducting with a nominal composition of BSSCCO was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h. the (001) peak of the high Tc phase was cleary observed.

  • PDF

High Tc Superconducting Microstrip Patch antenna ; Characterization of Superconducting Antenna using Non-Radiating Edge Feeding Technique (고온 초전도 마이크로스트립 패치 안테나; 비방사면 급전방식을 이용한 초전도 안테나 특성)

  • Chung, Dong-Chul;Park, Sung-Jin;Hwang, Jong-Sun;Park, Jong-Kwang;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.375-381
    • /
    • 2000
  • In this paper, we described the characterization of High-Tc Superconducting(HTS) microstrip antenna using non-radiating edge feeding technique and reported the microwave properties of HTS antennas with temperature. To do this, we prepared the $YBa_2Cu_3O_{7-x}$ superconducting thin film on MgO substrate using pulse-laser deposition techniques. The HTS microstrip antenna using non-radiating feeding technique was fabricated using chemical wet-etching. Then it was compared with identical antenna patterned with evaporated gold. The diverse measured results have been reported in terms of the input impedance, resonant frequency and return loss. In additional, at around the critical temperature, the effect of kinetic inductance which affect the resonant characteristic of the HTS microstrip antenna was reported.

  • PDF

Cold electronics based 128 temperature sensor interface with 14 leads for testing of high Tc superconducting cable

  • Gour, Abhay Singh;Thadela, S.;Rao, V.V.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.11-14
    • /
    • 2018
  • High Temperature Superconducting (HTS) power cables are capable of transmitting bulk power without any loss compared to conventional copper cables. The major challenge in the design of such HTS cables is the high stresses (electro-thermal/electro-mechanical) developed at high voltages, high currents and cryogenic temperatures. The safe and reliable operation of HTS cables involves lots of instrumentation for monitoring, measurement, control and safe operation. In principle, a four probe method for resistance (RTD PT-100) is used for temperature measurements at various locations of HTS cable. The number of connecting leads required for this is four times that of the number of sensors. The present paper discusses a novel way of connecting 128 RTD sensors with the help of only 14 leads using a cold electronics based multiplexer board. LabVIEW 11.0 software was used for interfacing and displaying the readings of all the sensors on computer screen.

Development of Centrifugal Forming Process for HTS Tube Fabrication (고온초전도체 튜브 제조를 위한 원섬 성형 공정 개발)

  • 정승호;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.98-100
    • /
    • 2002
  • We developed the Centrifugal Forming Process(CFP) for HTS tube fabrication. The self-designed equipment for CFP is devided into 3 main parts depending on its role and functions. the melting part by heating of high inductive frequency, centrifugal forming part for the tube and efficient microstructure control of Bi2212 phase and molding part for tube detachment after heat treatment. In this paper we will introduce self designed Centrifugal Forming Process for HTS tube fabrication and discuss about the results related mold materials in terms of high Tc superconductor.

  • PDF

The Characteristics on Transport Current of Bi-2223 Based Prototype HTS Cable (Bi-2223계 Prototype 고온 초존도 케이블의 전류 통전 특성)

  • 김영석;이병성;곽민환;장현만;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.630-635
    • /
    • 2000
  • Superconducting power cable is one of the most promising energy application of high-T$\sub$2/ superconductor(HTS). Thus we investigated previously the electrical and mechanical characteristics on Bi-2223 Ag sheathed tape. And a prototype HTS cable have been designed constructed and tested. In case of 19-filament type transport losses agree with the results of norris theory(strip). The critical current of HTS cable(1, 19-filament) in LN$_2$was 116[A], 240[A] and degradation coefficient(k) was 0.71, 0.73 respectively. In case of 19-filament cable critical current was decreased because of mechanical strain at pitch. And AC loss of HTS cable(19-filament) was 0.7 [W/m] in 240[A] loading

  • PDF