• Title/Summary/Keyword: High Swirl

Search Result 300, Processing Time 0.025 seconds

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee K. Y.;Kim H. M.;Han Y. M.;Lee S. Y.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

Comparison of Overall Characteristics between an Air-Assisted Fuel Injector and a High-Pressure Swirl Injector- Part II: Microscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교 - Part II: 미시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.28-35
    • /
    • 2000
  • As a second part of the comparison study, microscopic features of an air-assisted fuel injector(AAFI) and a high-pressure swirl injector (HPSI) were characterized. They consist of the internal spray structure in terms of fuel mass and drop diameter, the overall atomization performance with respect to operating parameters and the drop size distribution. Large droplets are concentrated in around the head part of a spray field of the HPSI, while in the case of the AAFI, they were distributed in the tail part. Although the AAFI showed the better atomization performance, the feasible ranges of operating parameters such as injection and ambient pressure were found to be wider in the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. However, at the well-atomized condition, it appeared to be very uniform.

  • PDF

Study on exhaust emission at the swirl chamber in small diesel engine (와류실식 소형디젤기관의 배기 성능에 관한 연구)

  • Myung, Byung-Soo;Lim, Jung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • The purpose of this research is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area, the depth and shape of the piston top cavity (main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. And another purpose of this research is to make a new diesel engine that is satisfied fuel consumption and regulation value of exhaust gas. 1. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load than low speed and low load. The influence of jet passage large area was proven to decrease the rate of fuel consumption. 2. Smoke was affected significantly by the depth of the piston top cavity, but exhaust temperature and the rate of fuel consumption wasn't affected. The rate of fuel consumption was affected by changing injection timing. 3. The rate of fuel consumption, exhaust temperature and Smoke were affected significantly by the shape of the piston top cavity from rectangular to trapezoid. That is we have all high value. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions. 4. We made a new diesel engine that is satisfied design target values(sfc=190 g/hr, NOx + THC=6.0 g/KWh, PM=0.3 KWh), the rate of fuel consumption and emission standard etc., through changing injection timing at the maximum torque point and rated power point. Although we have a little high NOx value.

  • PDF

A Study on High-Temperature Fuel Injection Characteristics through Swirl Injectors (스월 인젝터를 통한 고온 연료의 분사특성 연구)

  • Lee, Hyung Ju;Choi, Hojin;Kim, Ildoo;Hwang, Ki-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.11-19
    • /
    • 2013
  • An experimental study was conducted to investigate fuel injection characteristics through swirl injectors when the fuel was heated to very high temperature conditions. Three swirl injectors with different orifice diameters and swirler geometries were used to measure the flow coefficient (${\alpha}$) for the injection pressure ranges between 3 and 10 bar and the fuel temperature from 50 to $270^{\circ}C$. The results showed that the variation characteristics of ${\alpha}$ with respect to cavitation number ($K_c$) were highly dependent on both the orifice diameter and the swirler geometry. In addition, the characteristics of ${\alpha}$ variation with respect to AR, the area ratio of the flow through the swirler and the orifice, has revealed that the effect of boiling is retarded but the slope of decreasing ${\alpha}$ after the boiling effect is present tumbles as AR increases.

Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors (고체 입자 소각로에서 분사기의 설계 인자에 따른 유동 특성에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Su Ho;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1079-1089
    • /
    • 2013
  • The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of powerplants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

Combustion characteristics of coaxial diffusion flame with high preheated and swirled air (고온 공기와 선회수에 의한 동축 분류 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.112-117
    • /
    • 2001
  • An experiment using high preheated and swirled air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. $N_2$ gas was used for diluent and propane was utilized for fuel. Combustion using high preheated air has two remarkable characteristics ; (1) low NOx emission with increasing dilution level, (2) high thermal efficiency in the furnace. Also, swirled air can mix fuel and oxidizer well in condition of diffusion flme and maintain the stable combustion. The color of flame changes from yellow to blue green according to increasing the dilution level of mixture gas. NO emission decreased with increasing dilution level and the swirl number.

  • PDF