• 제목/요약/키워드: High Strength Steel Sheet

검색결과 233건 처리시간 0.02초

굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출 (A study on excavator front support parts to minimize springback defects)

  • 전용준;허영무;이하성;김동언
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

굴삭기 Tank Cover 부품 뒤틀림 불량 저감에 대한 연구 (A study on reduction of springback defects in excavator tank cover part)

  • 전용준;이하성;김동언;허영무
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.52-57
    • /
    • 2018
  • With the recent strengthening of environmental regulations and the need for cost reduction, excavators, a type of construction equipment, are being miniaturized while components are being developed in consideration of stability. In the case of excavator press parts, mainly high-strength steel sheets are being used to enhance stability and reduce weight. However, in the case of high-strength materials, there is a need to research product forming methods to reduce Springback in defects arising in parts assembly due to Springback that result from the internal residual stress that occurs in press forming being released after product forming. Accordingly, regarding the tank cover, an excavator press-forming part, this study selected a method to reduce distortion through analysis of the Springback occurrence rate and Springback causes through a forming analysis. A forming analysis was conducted for the Springback of the tank cover. Deformations of 13.714 mm in the upper part and 6.244 mm in the inner part of the product occurred, while wrinkles occurred on the sides of the product due to uneven thickness. A forming analysis was conducted for the major shapes of the product to investigate the causes of Springback. Distortion deformation due to the bead in the center of the product was confirmed to be a large factor. A Springback reduction method of correcting uneven thickness in the product sides, a Springback reduction method of removing the bead, and a correction method of restriking after the final forming were used in a forming analysis to determine the degree of Springback reduction. For the forming method to correct uneven thickness in the sides, deformation was reduced by 12% in the upper side compared to the existing model, but deformation in the inner side increased by 1%. For the restriking forming method, deformation decreased by 25% in the upper side and 13% in the inner side. For the bead removal method, deformation decreased by 28% in the upper side and 13% in the inner side, the largest Springback correction results. This indicates that the bead has a large affect on Springback.

수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발 (Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure)

  • 김성배;이나현;남진원;변근주;김장호
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.149-158
    • /
    • 2010
  • 현재 육상 노출 콘크리트 구조물의 보수 및 보강공법에는 많은 신기술이 개발되었고 연구도 많이 진행되고 있으나, 수중에 존치되어 있는 구조물, 즉 교각, 부두 잔교 및 강관파일과 같이 해수 및 수중에 잠겨 있으며, 지속적인 하중을 받는 콘크리트 및 강재의 보수보강 기술에 대한 연구는 많지 않다. 그러므로 이 연구에서는 해수나 수중에 있는 구조물의 보수 보강 공법에 사용할 수 있는 수중 에폭시를 개발하였고, 이 에폭시 재료와 보강섬유을 이용하여 수중용 FRP 복합재를 개발하였다. 개발된 재료의 성능을 검증하기 위하여 다양한 기초물성에 대한 시험을 수행하였다. 성능시험 결과, 개발된 에폭시는 수중에서도 풀림이 거의 없고 부유물질이 발생하지 않는다. 또한 수중이라는 제약 조건 속에서도 30,000 cps 이상의 높은 점성을 갖기 때문에 우수한 작업성을 보이며, 수중에서도 육상에서와 거의 유사한 2 MPa 이상의 부착성능을 발휘하는 것으로 나타났다. 내화학성 시험 결과에서도 중량변화율은 약 0.5~1.0% 이내로 측정되어 우수한 내염 저항성을 확인하였다.