• Title/Summary/Keyword: High Strain

Search Result 4,977, Processing Time 0.035 seconds

Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test (Taylor 봉 충격시험을 통한 고 변형률속도하 금속재료의 동적변형거동 평가)

  • Bae, Kyung Oh;Shin, Hyung Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.791-799
    • /
    • 2016
  • To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding $10^4\;s^{-1}$. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect (고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향)

  • 이지훈;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.

Study on the Compensation of Strain Measurement Error in Sheet Metals (박판 변형률 측정 오차의 보정에 관한 연구)

  • 차지혜;금영탁
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.594-599
    • /
    • 2004
  • In the sheet metal forming operations, the strain measurement of sheet panel is an essential work which provides the formability information needed in die design, process design, and product inspection. To measure efficiently complex geometry strains, the 3-dimensional automative strain measurement system, which theoretically has a high accuracy but practically has about 3~5% strain error, is often used. For eliminating the strain error resulted in measuring the strains of formed panels using an automated strain measurement system, the position error calibration method is suggested, which computes accurate strains using the grids with accurate nodal coordinates. The accurate nodal coordinates are calculated by adding the nodal coordinates measured by the measurement system and the position error found using the multiple regression method as a function of the main error parameters obtained from the analysis of strain error in a standard cube. For the verification, the strain distributions of square and dome cups obtained from the position error calibration method are compared with those provided by the finite element analysis and ASAME.

Genealogical Relationship between Pedigree and Microsatellite Information and Analysis of Genetic Structure of a Highly Inbred Japanese Black Cattle Strain

  • Sasazaki, S.;Honda, T.;Fukushima, M.;Oyama, K.;Mannen, H.;Mukai, F.;Tsuji, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1355-1359
    • /
    • 2004
  • Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree nformation. Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree information.

Evaluation on Shrinkage Strain and Mechanical Properties of High Strength Concrete at Elevated Temperature (가열을 받은 고강도 콘크리트의 역학적 특성 및 수축변형 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Seo, Won-Woo;Baek, Jae-Uk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.220-221
    • /
    • 2017
  • In this study, the thermal strain of high strength concrete with the compressive strength of 70, 80, 100MPa were measured under 33% of compressive strength loading condition. As results, it is considered that shrinkage strain of high strength concrete become grater at the elevated temperatures.

  • PDF

Effects of Job Strains on Absenteeism from Work (직업성 긴장과 근로자 결근)

  • Cha, Bong-Suk;Chang, Sei-Jin;Choi, Hong-Ryul;Kim, Hyong-Sik;Koh, Sang-Baek
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.4
    • /
    • pp.505-512
    • /
    • 1999
  • Objectives : The purpose of this study was to assess the relationship between job strains and absenteeism from work. Methods : The study design was cross-sectional, and the study subjects consisted of 1,166 workers who were employed in the small-sized industries. A self administered questionnaire was used to measure the general characteristics, job characteristics(job demand, job control), and social support(coworker support, supervisor support) at work. The Job Content Questionnaire(JCQ) was used to assess job demand(2 items) and decision lattitude(10 items). Social support at work (10 items) was measured using JCQ. Sick absence was collected using self-report and were rechecked by the attendance record of their company. Odds ratios and 95% confidence intervals for the association between job strain and sick absence were estimated. The modifying effect of social support was evaluated by stratification. Logistic regression was used to estimate the relationship between job strain and sick absence. Results : In the bivariate analysis, the variables related to sick absence were age, marital status, occupation, job demand. Four distinctly different kinds of level of job strain were generated by the combination of job demand and job control: low strain group, high strain group, active group, and passive group. The crude odds ratio of high job strain was 1.78(95% CI: 1.26-2.53), and those of active group and passive group were 1.33(95% CI: 1.07-1.66) and 1.13 (95% CI: 0.88-1.47), respectively. The odds ratio of high job strain after adjusting for age and occupation were still significant The odds ratio of high job strain in low social support was 5.96(95% CI: 2.45-14.51), but that in high social support was 0.73(95% CI: 0.26-2.01). Conclusions : Job strain was associated with increased risk of absenteeism from work, and social support at work modified the association between job strain and sick absence.

  • PDF

Simultaneous Measurement of Strain and High Frequency Vibration of Composite Main Wing Model (복합재 주 날개 모델의 변형률과 진동의 동시 측정)

  • Song, Ji-Yong;Yoon, Hyuk-Jin;Park, Sang-Wuk;Park, Sang-Oh;Kim, Chon-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.185-189
    • /
    • 2005
  • For the simultaneous measurement of strain and vibration signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter could measure low-frequency signal such as strain and the other demodulator using a coarse wavelength division multiplexer could detect high-frequency signal such as vibration signal using intensity demodulation method. In order to measure strain and vibration of the composite main wing model under static loading a real time monitoring program was developed. Also using intensity demodulation of CWDM, sensitivity and resolution at high frequency vibration were evaluated.

  • PDF

Analysis of Sliding Wear Mode on Hardened Steel by X-ray Diffraction Technique (X선회절에 의한 철강재료의 미Rm럼 마모형태 해석에 관한 연구(고경도강에의 적용))

  • 이한영
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • High strength steels are widely used as tribo-materials in the field. Previous study revealed that for mild steel, the states of strain on the worn surface measured by X-ray diffraction has a good relationship with the state of wear. The objective of this study is to identify the relationship between the state of strain on the worn surface and the state of wear in high strength steels. Sliding wear tests were carried out using several hardened steels. X-ray diffraction tests were conducted to analyze the state of strain on the worn surface during wear. The experimental results indicated that the state of strain on worn surface in the hardened steel shows the same tendency as in the mild steel. It is clear that change of half value width on the worn surface as a function of sliding speeds is broadly similar in shape to wear characteristics curve and its magnitude has a good relationship with the wear rate at two different wear modes in the hardened steel.

Improvement of long-time creep life prediction of steam turbine rotor steel (증기 터빈축 강재의 장시간 크리프 수명 예측법 개선)

  • 오세규;정순억;전태언
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.47-52
    • /
    • 1996
  • This paper deals with a study on improvement of long-time creep life prediction of steam turbine rotor steels by using initial strain method as a new approach at high temperatures of 500 to 70$0^{\circ}C$ . The main result shows that the inital strain method could be reliably utilized to predict and evaluate the long-time creep life as creep rupture strength and that the predicting equation for long-time creep life under a certain creep stress at a certain high temperature could be empirically derived out from each initial instantaneous strain measured.

  • PDF

A Study on the Springback of High-Strength TRIP Steel (고강도 TRIP 강의 스프링백에 대한 연구)

  • 김용환;김태우;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • TRIP steel has got attention in automobile industry because of its high strength and high formability. However, the information on deformation behavior of TRIP steel, including bending and springback, is not enough until now. In this research, the V-die bending experiment and analysis have been done to obtain the information of springback of TRIP steel. And a new numerical method, where elastic modulus is varied with the change of the strain, was suggested. Tensile test for TRIP steel was done to get tensile properties as well as strain dependency of elastic modulus of the material. Strain-dependency of elastic modulus was used the numerical analysis of V-die bending and unbending process to predict springback amount. The results were compared with experiment, showing reasonable agreement. Through the analysis of V-die bending as well as draw bending of TRIP steel, the proposed scheme with variable elastic modulus was proven to well predict the deformation behavior of TRIP steel during bending and springback.