• Title/Summary/Keyword: High Stiffness and Lightweight

Search Result 76, Processing Time 0.025 seconds

A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line (섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구)

  • Park, Sung Min;Lee, Seung Jae;Kang, Soo Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Design and Manufacture of a Hand-made Vehicle Based on a Formula (포뮬러 형태의 자작자동차 설계 및 제작)

  • Lee, Soo Jin;Jeong, Wonsun;Kim, Geunbi;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.568-575
    • /
    • 2015
  • A hand-made vehicle with a formula (VF-1) was designed and manufactured with the aim of realizing a lightweight and high-performance vehicle. The driver's body weight and stiffness of the frame were considered. The vehicle was equipped with a one-cylinder Exiv 250 engine with intake manifold potting for realizing weight reduction, high performance, and low cost. The suspension system for the formula was designed through the analyses and tests of vehicle motion and equipment. In a steering system, anti-Ackerman geometry was introduced to increase the transverse force during cornering. A full electric paddle shift system was adopted to decrease the braking distance. For protection against the distortion and warping of the frame, tungsten inert gas (TIG) welding technology was used.

A Study on Shape Optimization of High-Speed Index Table with Hypoid Gear (하이포이드기어 내장형 고속 인덱스 테이블의 형상최적화에 관한 연구)

  • Lee, Choon Man;Ahn, Jong Wook;Kim, Dong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.179-184
    • /
    • 2015
  • In the recent field of Machining, with the improving efficiency of processing, the index table is a key unit according to the increase of parts in available processing when working with the three axes at the same time. As an essential product of MCT, the index tables effect an influence on product quality of machined parts. Therefore, it is necessary to design the shape of index table with stability, high stiffness, lightweight structure. In this study, the optimal shape of index table was proposed using by design of experiment. The maximum displacement and stress analysis were carried out by using FEM software. The optimized shape was verified by using the statistical software. The results of shape optimization were confirmed that both displacement and stress were reduced in comparison with initial model.

Mitigation of Mechanical Loads of NREL 5 MW Wind Turbine Tower (NREL 5MW 풍력 터빈 타워의 기계적 하중 완화)

  • Nam, Yoon-Su;Im, Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1455-1462
    • /
    • 2012
  • As the size of a wind turbine increases, the mechanical structure has to have an increasing mechanical stiffness that is sufficient to withstand mechanical fatigue loads over a lifespan of more than 20 years. However, this leads to a heavier mechanical design, which means a high material cost during wind turbine manufacturing. Therefore, lightweight design of a wind turbine is an important design constraint. Usually, a lightweight mechanical structure has low damping. Therefore, if it is subjected to a disturbance, it will oscillate continuously. This study deals with the active damping control of a wind turbine tower. An algorithm that mitigates the mechanical loads of a wind turbine tower is introduced. The effectiveness of this algorithm is verified through a numerical simulation using GH Bladed, which is a commercial aero-elastic code for wind turbines.

Analysis of Characteristics of CFRP Composites Exposed Under High-Temperature and High-Humidity Environment for a Long Period (고온 다습한 환경에 장기간 노출된 CFRP 복합재료의 특성 분석)

  • Hong, Suk-Woo;Ahn, Sang-Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.889-895
    • /
    • 2012
  • Carbon fiber reinforced plastic (CFRP) composites have high specific stiffness and high specific strength. Therefore, they are increasingly being use, instead of conventional metallic materials in the aviation and automobile industries, where there is a strong demand for lightweight materials. In aircraft, the fuselage is exposed to severe conditions of high temperatures and high humidity. Therefore, it is necessary to estimate the strength of CFRP composites under real conditions from the viewpoint of aircraft safety. In this study, CFRP specimens were immersed in distilled water at $75^{\circ}C$ for a long time. Then, tensile tests were performed on these specimens, and the fracture characteristics of the fractured surfaces were analyzed using SEM. A fatigue test was performed on specimens immersed for 300 days with R=0.1, and it was confirmed that the fatigue life deteriorated in immersed specimens compared to specimens that were not immersed.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.