• Title/Summary/Keyword: High Stage Speed Gear

Search Result 22, Processing Time 0.018 seconds

Design Method for Multi-Stage Gear Drive (다단 치차장치의 설계법)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.470-475
    • /
    • 1999
  • Recently as the application of gear drive increases in high-speed and high-loading, the concern of designing multi-stage gear drive is being risen. Until now however, the research of gear drive is focused on single-stage gear drive and the design depends on experiences and know-how of designer and is carried out by trial and error. This research automated the basic design and the configuration design for two and three-stage gear drives which consist of cylindrical gears. In basic design, design is executed with two design processes, which minimize the overall volume of gear, and whose results are compared each other. In configuration design, the positions of gears are determined to minimize the volume of gearbox using the result of basic design and simulated annealing algorithm.

  • PDF

Development of a Design System for Multi-Stage Gear Driver (1st Report : Proposal Formal Processes for Dimensional Design)

  • Chong, Tae-Hyoun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.57-64
    • /
    • 2001
  • In recent years, the concern of designing multi-stage gear drives ha increased with more application of them in high-speed and high-load. Until now, however, the researches on the design of gear drives have been focused on single gear pairs. Thus the design practice for multi-stage gear drives has been depended on experiences and expertise of designers and carried out commonly by trial and error. We propose an automation algorithm for the design of two-and three-strage cylindrical gear drives. The two types of dimensional design processes have been proposed to determine gear dimensions in a formal way. The first design process(Process I) uses to total volume of gears to determine gear ration , and uses K factor , unit load and aspect ration to determine gear dimensions, The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and gear dimensions. Process I and Process II employ material date from AGMA and ISO standards, respectively. The configuration design determines the positions of gears with minimizing the volume of gearbox by using a simulated annealing algorithm. The availability of the design algorithm is validated by the design examples to two-and three=stage gear drives.

  • PDF

Development of a Design System for Multi-Stage Gear Drives (1st Report : Procposal of Formal Processes for Dimensional Design of Gears) (다단 치차장치 설계 시스템 개발에 관한 연구(제 1보: 정식화된 제원 설계 프로세스의 제안))

  • Jeong, Tae-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.202-209
    • /
    • 2000
  • In recent years the concern of designing multi-stage gear drives increases with the more application of gear drives in high-speed and high-load. until now however research on the gear drive design has been focused on single gear pairs and the design has been depended on experiences and know-how of designers and carried out commonly by trial and error. We propose the automation of the dimensional design of gears and the configuration design for gear arrangement of two-and three-stage cylindrical gear drives. The dimensional design is divided into two types of design processes to determine the dimensions of gears. The first design process(Process I) uses the total volume of gears to determine gear ratio and uses K factor unit load and aspect ratio to determine gear dimensions. The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and dimensions. Process I and II employ material data from AGMA and ISO standards respectively. The configuration design determines the positions of gears to minimize the volume of gearbox by simulated annealing algorithm. Finally the availability of the design algorithm is validated by the design examples of two-and three-stage gear drives.

  • PDF

Development of High-Ratio Planetary Reduction Gears Applied Differential Ring Gear Type (차동 링기어 방식의 고비율 유성기어 감속기 개발)

  • 박규식;이기명;김유일
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.497-502
    • /
    • 1997
  • Automation facilities of greenhouses have been continuously developed. However, the conventional two-stage worm gear reducer reveals some problems, including low transmission efficiency. The worm gear reducer also have some difficulties in manufacturing and short life. Therefore, this study was performed to develop a planetary gear reducer, having a high Sear reduction ratio and high torque transmission efficiency. The planetary gear system consisted of a fixed ring gear and a 2-teeth differential ring gear turning slow, as the planetary pinion orbits fast around the fixed ring gear. The developed gear system can achieve a high speed reduction rate at one stage. The reducing system was employed to the greenhouse ventilation system. The reducer has the transmission efficiency of 70.5%, 2∼3 times longer life time, and twofold roll-up torque at an affordable price, comparing with conventional reducers. This reducer can be also applied to many industrial equipments, such as industrial crane, hoist, elevator and gondola etc.

  • PDF

Development of Design System for Multi-Stage Gear Drives Using Simulated Annealing Algorithm (시뮬레이티드 어닐링을 이용한 다단 치차장치의 설계 시스템 개발)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.464-469
    • /
    • 1999
  • Recently, the need for designing multi-stage gear drive has been increased as the hear drives are used more in the applications with high-speed and small volume. The design of multi-stage gear drives includes not only dimensional design but also configuration design of various machine elements. Until now, however, the researches on the design of gear drives are mainly focused on the single-stage gear drives and the design practices for multi-stage gear drives, especially in configuration design activity, mainly depend on the experiences and 'sense' of the designer by trial and error. We propose a design algorithm to automate the dimension design and the configuration design of multi-stage gear drives. The design process consists of four steps. The number of stage should be determined in the first step. In second step, the gear ratios of each reduction stage are determined using random search, and the ratios are basic input for the dimension design of gears, which is performed by the exhaustive search in third step. The designs of gears are guaranteed by the pitting resistance and bending strength rating practices by AGMA rating formulas. In configuration design, the positions of gears are determined to minimize the volume of gearbox using simulated annealing algorithm. The effectiveness of the algorithm is assured by the design example of a 4-stage gear drive.

  • PDF

Development of Jig Type Chuck for Roundness Improvement in a Machining of High Stage Speed Gear (고단속 기어의 가공 시 진원도 향상을 위한 지그척 개발)

  • Kim, Nam-Kyung;Bae, Kang-Yul;Kim, Nam-Hoon;Jang, Jeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Recently, the requirements for high precision and efficiency machining are gradually increased to raise international competitiveness at the industrial fields of automotive and gears. This trend had made effects on the industrial fields in Korea and which needs further studying of high accuracy and efficiency machining. This study is to investigate the effects of Jig type chuck for roundness improvement in CNC turning machining of high stage speed gear. After hobbing machining, Dimensional change before and after heat treatment was very largely generated. In order to solve this problem was to develop a jig type chuck. After the heat treatment, the operation of the chuck which was the most distinguished equipment among Jig type chuck(0.006mm), Scroll type chuck(0.05mm) and Bolt type chuck(0.04mm). Therefore, Jig type chuck was satisfied the requirement from the actual field(0.02mm).

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 600HP Gear Driven Turbo-Compressor (600HP급 기어구동형 터보 공기압축기 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;권병수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.50-57
    • /
    • 1997
  • A 600HP class high-speed gear driven 3-stage turbo-compressor (IGCC : Integrally Geared Centrifugal Compressor) driven by a 3600 rpm AC induction motor has been designed, of which low speed pinion runs at 35000 rpm and high speed pinion at 50000 rpm nominally. Due to its high speed operation, the system requires very reliable bearing selection and design as well as accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the IGCC rotor-bearing system predicted that the low speed pinion rotor mounted on 5-pad tilting pad bearings has two critical speeds before its design speed and high speed pinion rotor only one critical speed, and estimated critical speeds of both pinion shafts are away from the continuous operating speed enough to satisfy the corresponding API requirement. The forced response analysis with API specified maximum allowable unbalances also showed that unbalance responses are small enough for smooth operation of the system.

  • PDF

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Study on the Shift Characteristics of a 2speed Manual Transmission apply to V-Blet (V-blet를 적용한 2단 수동변속기의 변속특성에 관한 연구)

  • Youm, Kwang-wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • As research and development of eco-friendly vehicles are expanding worldwide, additional devices of vehicles are reduced or deleted to increase the mileage, or research is being conducted to reduce weight. Among them, the multi-stage transmission that was applied to the internal combustion engine vehicle was deleted and replaced with a reducer, and the initial driving power is secured by increasing the torque through the control of the motor output value. However, since frequent motor speed change can result in a load increase, this study attempts to develop a compact and lightweight manual two-stage reducer with a general reducer structure. Therefore, a two-speed transmission with two gear ratio was designed by inserting a large gear and a small gear in a structure with a parallel shaft to connect the gears with a V-belt in the form of a parallel shaft reducer, and setting the gear ratio of the low and high gears respectively. In addition, power performance according to the rotational speed and load of the transmission was checked through a test, and the heat generation characteristics generated during driving were checked to verify the validity of the transmission.

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.