• Title/Summary/Keyword: High Speed Robot

Search Result 281, Processing Time 0.029 seconds

Vibration Control of a Flexible Fobot Manipulator (유연한 로봇팔의 진동제어)

  • 신효필;윤여산;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.229-232
    • /
    • 1996
  • The position control accuracy of the robot arm is decreased significantly when a long arm robot is operated at high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system will be necessarily designed with its elastic modes taken into account. In this paper, the vibration control of a one-link flexible robot arm is presented. The robot system consists of a flexible arm manufactured with thin aluminium plate, AC servomotor with a harmonic drive for speed reduction, optical encoder and accelerometer. The system is modeled with limited number of elastic modes, and its parameters are determined from the results of the experiments. The implemented control schemes are LQ control and sliding mode control. The experiments and digital simulations are carried out to test the validity of the system modeling, controller design, and active control implementation.

  • PDF

Design of Teleoperation System for Ackermann-steering Mobile Robot considering Driving Stability (애커먼 조향 이동로봇의 주행 안정성을 고려한 원격운용 시스템 설계)

  • Lee, Dong-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 2022
  • This paper proposes a 2D joystick and LoRa-based teleoperation system for the Ackermman steering mobile robot. The proposed joystick mapping algorithm reduces the linear speed of the robot when the joystick is steered in the direction of the maximum steering angle in the high-speed driving state of a mobile robot to reduce the risk of rollover. The LoRa-based remote operation system is designed for remote operation of mobile robots that require long range communication with relatively little data transmission and low power. The proposed system is implemented and the experimental results demonstrate the effectiveness of the teleoperation system with respect to the stability of communication strength and the robot motion.

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

Development of a Bio-mimetic Quadruped Walking Robot with Waist Joint

  • Kim, Dong-Sik;Park, Se-Hoon;Kim, Kyung-Ho;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1530-1534
    • /
    • 2004
  • This paper presents a novel bio-mimetic quadruped walking robot with a waist joint, which connects the front and the rear parts of the body. The new robot, called ELIRO-1(Eating LIzard RObot version 1), can bend its body while the legs is transferred, thereby increasing the stride and speed of the robot. The waist-jointed walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. We design the mechanical structure of the robot, which is small and light to have high movability and high degree of human friendship. In this paper, we describe characteristics of the waist joint and leg mechanism as well as the analysis using ADAMS to select appropriate actuators. In addition, a hardware and software of the controller of ELIRO-1 are described.

  • PDF

Context-Independent Speaker Recognition in URC Environment (지능형 서비스 로봇을 위한 문맥독립 화자인식 시스템)

  • Ji, Mi-Kyong;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • This paper presents a speaker recognition system intended for use in human-robot interaction. The proposed speaker recognition system can achieve significantly high performance in the Ubiquitous Robot Companion (URC) environment. The URC concept is a scenario in which a robot is connected to a server through a broadband connection allowing functions to be performed on the server side, thereby minimizing the stand-alone function significantly and reducing the robot client cost. Instead of giving a robot (client) on-board cognitive capabilities, the sensing and processing work are outsourced to a central computer (server) connected to the high-speed Internet, with only the moving capability provided by the robot. Our aim is to enhance human-robot interaction by increasing the performance of speaker recognition with multiple microphones on the robot side in adverse distant-talking environments. Our speaker recognizer provides the URC project with a basic interface for human-robot interaction.

  • PDF

Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors (초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현)

  • Im, Mi-Seop;Im, Jun-Hong;O, Sang-Rok;Yu, Beom-Jae;Yun, In-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

An Approach to a Speed Estimation Method to Remove Speed Sensor of Underwater Robot's AC Drive Systems (수중로봇용 AC구동시스템의 속도센서 제거를 위한 속도추정법 연구)

  • 전봉환;임용곤;이판묵
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.371-376
    • /
    • 1998
  • This paper describes an approach to a speed estimation method to remove speed sensor of underwater robot's AC drive systems. AC motors have been widely used in the field of underwater robot's manipulator or propulsion system. Most of these AC motors for underwater use have usually filled oil to compensate the high pressure in deep-sea operation, where a resolver is adopted to feed back the speed of rotor But this kind of speed feedback devices gives rise to some defects arising from their mechanical complexity and numerous signal lines; a resolver needs 6 or 7 signal lines for proper operation. This paper presents a speed estimation method to improve these problems of induction motor, which is adopted as a prototype of AC motor. The proposed speed estimation method is based on the RFO(rotor flux orientation) vector control method of voltage-fed AC drives. Using the controller of voltage-fed AC drives, it is unnecessary to measure the voltage for the estimation of rotor speed, which reduces the effects of measurement error Numerical simulation is carried out to investigate the validity of the method and the effects of rotors resistance variation.

  • PDF

A speed reducer for a robot with straight line teeth profile (직선 치형을 갖는 로봇용 감속기 운동해석)

  • Nam Won-Ki;Lim Sun-Ho;Jeon Han-Su;Oh Se-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.91-92
    • /
    • 2006
  • High precision speed reducer which has a cycloid or involute teeth profile, used to in Robot. In this study, suggest to a new teeth profile, which has basically a triangle teeth profile. We had a stress analysis compare to convenient speed reducer for teeth profile. We has a good results in new teeth profile for strength, stress and stiffness.

  • PDF

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

A Computer Simulation on the Efficiency of Energy Consumption for Quadruped Walking Robot (4족 보행로봇의 소비에너지 효율에 관한 시뮬레이션)

  • Ahn Byong-Won;Bae Cherl-o;Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1247-1252
    • /
    • 2005
  • Though a legged robot has a high terrain adaptability as compared with a wheeled robot, its moving speed is considerably low in general. For attaining a high moving speed with a logged robot, a dynamically stable walking is a promising solution. However, the energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, energy consumption of two walking patterns for a trot gait is simulated through modeling a quadruped walking robot named TITAN-VIII.