• Title/Summary/Keyword: High Speed Robot

Search Result 281, Processing Time 0.023 seconds

Reduction of Residual Vibration in Wafer Positioning System Using Input Shaping (입력성형을 통한 웨이퍼 이송장치의 잔류진동 감쇠)

  • Yim, Jae-Chul;Ahn, Tae-Kil;Cho, Jung-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.559-563
    • /
    • 2005
  • The wafer positioning robot used in the semiconductor industry is required to operate at high speed for the improvement of productivity. However, the residual vibration produced by the high speed of the wafer positioning robot makes the life of the robot shorter and the cycle time longer. In this study, the input shaping and the path of the system are designed for the reduction of the residual vibration and the optimization of the cycle time. The followings are the process for the reduction and the optimization; 1)System modeling of wafer positioning robot, 2)Verification of dynamic characteristic of wafer positioning robot, 3)Input shaping plan using impulse response reiteration, 4)Simulation test using simulink, 6)Analysis of result.

  • PDF

Comparison of vibration characteristics on reducer for robot (로보트용 감속기의 지동 특성 비교)

  • 손창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.479-483
    • /
    • 1987
  • The reducers are widely used to reduce output speed and to amplify driving torque of actuator for industrial robots and many industrial units. But the vibration of robot, which is affected by the reducer, becomes a problem for robot which has to move a driven part with high accuracy. This paper compares experimentally the vibration characteristics of the reducer for industrial robot.

  • PDF

Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot (다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어)

  • Do, Hyun Min;Kim, Byung In;Park, Chanhun;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

Development of Humanoid Robot's Intelligent Foot with Six-axis Force/Moment Sensors (6축 힘/모멘트센서를 가진 인간형 로봇의 지능형 발 개발)

  • Kim, Gab-Soon;Kim, Hyeon-Min;Yoon, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.96-103
    • /
    • 2009
  • This paper describes a humanoid robot's intelligent foot with two six-axis force/moment sensors. The developed humanoid robots didn't get the intelligent feet for walking on uneven surface safely. In order to walk on uneven surface safely, the robot should measure the reaction forces and moments applied on the sales of the feet, and they should be controlled with the measured the forces and moments. In this paper, an intelligent foot for a humanoid robot was developed. First, the body of foot was designed to be rotated the toe and the heel to all directions, second, the six-axis force/moment sensors were manufactured, third, the high-speed controller was manufactured using DSP(digital signal processor), fourth, the humanoid robot's intelligent foot was manufactured using the body of foot, two six-axis force/moment sensors and the high-speed controller, finally, the characteristic test of the intelligent foot was carried out. It is thought that the foot could be used for a humanoid robot.

Development and Design of Robot Speed Reducer(RSR) with Straight Line Teeth Profile for Human Robot (휴먼 로봇을 위한 직선 치형을 갖는 로봇 감속기(RSR)의 설계 및 개발)

  • Nam Won-Ki;Jang In-Hun;Oh Se-Hoon;Shin Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • There are many types of reduction drives for industrial applications. In general, high precision speed reducer which has a cycloid or involute teeth profile, used to in robot. Because, it is essential to use precision reduction drives for accuracy of position control on robot system. In this paper, we propose a robot speed reducer(RSR) with straight line teeth profile, which has basically a triangle teeth profile. In new straight line teeth profile, we have a good result for strength, stress and stiffness by using finite element analysis and the results indicate that variation of eccentric coefficient affects the optimal tooth motion, and it can lower the stress and noise.

Real-Time Force Control of Biped Robot to Generate High-Speed Horizontal Motion of Center of Mass (이족 로봇의 무게 중심 수평 위치 고속 이동을 위한 실시간 힘 제어 기법)

  • Lee, Yisoo;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.183-192
    • /
    • 2016
  • Generating motion of center of mass for biped robots is a challenging issue since biped robots can easily lose balance due to limited contact area between foot and ground. In this paper, we propose force control method to generate high-speed motion of the center of mass for horizontal direction without losing balancing condition. Contact consistent multi-body dynamics of the robot is used to calculate force for horizontal direction of the center of mass considering balance. The calculated force is applied for acceleration or deceleration of the center of mass to generate high speed motion. The linear inverted pendulum model is used to estimate motion of the center of mass and the estimated motion is used to select either maximum or minimum force to stop at goal position. The proposed method is verified by experiments using 12-DOF torque controlled human sized legged robot.

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

Development of Fast Posture Classification System for Table Tennis Robot (탁구 로봇을 위한 빠른 자세 분류 시스템 개발)

  • Jin, Seongho;Kwon, Yongwoo;Kim, Yoonjeong;Park, Miyoung;An, Jaehoon;Kang, Hosun;Choi, Jiwook;Lee, Inho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.463-476
    • /
    • 2022
  • In this paper, we propose a table tennis posture classification system using a cooperative robot to develop a table tennis robot that can be trained like a real game. The most ideal table tennis robot would be a robot with a high joint driving speed and a high degree of freedom. Therefore, in this paper, we intend to use a cooperative robot with sufficient degrees of freedom to develop a robot that can be trained like a real game. However, cooperative robots have the disadvantage of slow joint driving speed. These shortcomings are expected to be overcome through quick recognition. Therefore, in this paper, we try to quickly classify the opponent's posture to overcome the slow joint driving speed. To this end, learning about dynamic postures was conducted using image data as input, and finally, three classification models were created and comparative experiments and evaluations were performed on the designated dynamic postures. In conclusion, comparative experimental data demonstrate the highest classification accuracy and fastest classification speed in classification models using MLP (Multi-Layer Perceptron), and thus demonstrate the validity of the proposed algorithm.

Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators (인조 꼬리지느러미가 압전작동기 구동형 생체모사 물고기 로봇의 성능에 미치는 영향)

  • Heo, Seok;Park, Hoon-Cheol;Tedy, Wiguna;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.429-434
    • /
    • 2007
  • This paper presents an experimental and parametric study of a biomimetic fish robot actuated by the Lightweight Piezo-composite Actuator(LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF(Body and Caudal fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, area, and aspect ratio. It was found that a high aspect ratio caudal fin contributes to high swimming speed. The fish robot was propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for 300 Vpp input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot was examined by Strouhal number, Froude number, Reynolds number, and Net forward force.

  • PDF

Design of an adaptive output feedback controller for robot manipulators (로보트 매니퓰레이터에 대한 출력궤환 적응제어기 설계)

  • 이강웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.734-738
    • /
    • 1996
  • An adaptive output feedback controller is designed for tracking control of an n-link robot manipulator with unknown load. High-gain observers with same structure as error dynamic systems are used to estimate joint velocities. The parameter adaptation is achieved by the smoothed projection algorithm. The control inputs are saturated outside a domain of interest. Simulation results on a 2-link manipulator illustrate that when the speed of the high-gain observer is sufficiently high, the proposed controller recovers the performance under state feedback control.

  • PDF