• Title/Summary/Keyword: High Speed Precision Machining

Search Result 351, Processing Time 0.024 seconds

An Analytical Study on the Effects of Structural Reinforcement for Laser Multi-tasking Machine (레이저 복합 가공기의 구조보강의 영향 평가에 관한 해석적 연구)

  • Shin, J.H.;Lee, C.M.;Chung, W.J.;Kim, J.S.;Lee, W.C.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.37-43
    • /
    • 2007
  • Recent technological developments in machine tools have been focused on high speed, low vibration machining and high precision machining. And the concern with multi-functional machining has been increased for the last several years. Multi-tasking machines are widely used in machine tool industries. Laser multi-tasking machine has been developed for high precision and fewer vibration machining. The purpose of this study is to evaluate the effects of structural reinforcement on Laser multi-tasking machine which is comprehensively combined turning center and laser machine. Up to date, for the structural stability evaluation of a multi-tasking machine, the analysis model has been considered only the weight of the upper parts. The positions of upper parts on multi-tasking machine have not been considered in the model. So, the results of the present FE model have revealed some difference with measurement data in case of multi-tasking machine. Design of the machine and structural analysis is carried out by FEM simulation using the commercial software CATIA V5. In the result of the structural analysis, effectiveness of reinforcement of the bed was confirmed.

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

Study of Cutting Characteristics in High Speed Synchronized Tapping (고속 동기 탭핑에서의 절삭 특성에 관한 연구)

  • 정용수;이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.304-307
    • /
    • 2002
  • High speed machining was accomplished. through the technological advances which covers the whole field of mechanical industry. But tapping have many troubles because of its complicate cutting mechanism, for example. tool damage, chip elimination and synchronization between spindle rotation and feed motion. But High speed tapping is so important that it marches in step with the flow of the times and make improvement in the productivity. In this paper we analyze mechanism of high speed synchronized tapping with the signal of tapping torque and spindle speed obtained through the newly developed high speed tapping machine(NTT-30B). We made an experiment with this machine on condition of various speed from 1000rpm to 10000rpm. As one complete thread is performed through the whole chamfer cutting, cutting torque increases highly in chamfer cutting, but smoothly in full thread cutting functioning of the threads guide. And the size of cutting torque according to spindle speed(rpm) was not enough of a difference to be conspicuous.

  • PDF

Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System (공기냉각 모터내장형 주축계의 열거동에 관한 연구)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF

Effect on Tooling Characteristics to DLC-coated Thickness of Tool for Graphite Material (흑연소재가공용 공구의 DLC 코팅두께가 가공특성에 미치는 영향)

  • Yoon, Jae-Ho;Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.22-27
    • /
    • 2015
  • Processing of low toughness graphite material requires high-speed machine tools and DLC coating. In this study, results of investigation of the tool wear and machining properties of the DLC coating according to the thickness, and the machining time of the tool used for the machining of graphite electrodes, were as follows. 1. DLC coating thickness shows a larger wear amount of the tool center in accordance with thickness; the wear amount of the tool increases in proportion to the machining time. 2. The difference between the amount of wear depending on the processing time shows edge portions larger than the tool wear amount in the center. This amount of wear of the tool edge is formed since the rotating torque is in contact with the graphite material surface significantly more than the central portion. 3. The thicker the DLC coating, the more the coating tool eliminated of the coating area by the interface between the cemented carbide tool being coated with an increased friction of the graphite material and the DLC coating area.

A Study on Static and Dynamic Cutting Force in Drilling Process for Machining Center (1st report) -SM45C- (Machining Center에서의 Drill가공시 절삭저항과 그 동적성분에 관한 연구 (제1보) -SM45C 중심으로-)

  • Jeon Eon Chan;Masaomi Tsutsumi;Yoshimi Ito;Namgung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.91-101
    • /
    • 1986
  • This paper deals with the effect of static and dynamic cuttig force and the behaviour of drill life in drilling process. The experiments are performed with cemented carbide drills and high speed steel drills of 10mm in diameter and in an annealed SM45C. The conclusions are as follows (1) Dynamic cutting force is varied with the dept of hole. (2) Dynamic cutting forces of torque and thrust are increase with the increase in feed and cutting speed. (3) Chipping influence the dynamic cutting force of thrust than torque, and in the case of thrust, the amplitude is 3-7 times large than ordinary cutting state. (4) Prediction of drill life can be obtained from more easily the amplitude of static cutting force than that of dynamic cutting force.

  • PDF

A Study on Spindle Shape Design using Design of Experiments (실험계획법을 이용한 주축 형상 설계에 관한 연구)

  • Shin, Jae-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.120-127
    • /
    • 2009
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in vibration of spindle. This paper concerns the improvement of spindle design using design of experiments. To improve the design of critical speed and weight of spindle, the experiments using central composite method have been carried out. The targets are critical speed and weight of spindle. For optimization of critical speed and weight and optimization of only critical speed by operation of all area search through response optimizer, the result of analysis has improved design of each factor. Finite element analyses are performed by using the commercial codes ARMD, CATIA V5 and ANSYS workbench. From the results, it has been shown that the proposed method is effective for modification of spindle design to improve critical speed and weight.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

A Study on the Failure and Life Assessment of High Speed Spindle (고속주축의 고장 및 수명평가에 관한 연구)

  • Lee, Tae Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

윈도우즈 GUI 환경을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발

  • 이용희;김석일;이재윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.836-840
    • /
    • 1995
  • Recently, the motor-integrated spindle spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI encironment.

  • PDF