• Title/Summary/Keyword: High Speed Precision Machining

Search Result 351, Processing Time 0.028 seconds

Design of High Precision Spindle System for Ferrule Grinding Machine (페룰 가공용 고정밀 주축시스템 설계)

  • 편영식;박정현;이건범;요꼬이요시유끼;여진욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.15-19
    • /
    • 2002
  • With the rapid development of industrial technologies, the demand for high precision products has been increasing drastically. For this reason, the need for developing of high performance machine tool, which can ensure high precision, is desired in the industrial fields. Technologies on the spindle system manufacture, guideway manufacture, error compensation, design of bed structure, protection against vibrations, and system integration are core technology for developing of high precision machine tools. Especially, among these, design of spindle system, which is leading precision and manufacturing technique. is one of the most important technologies. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect caused by thermal, cutting torque, cutting farce, and work-piece materials. The detail process of analysis is presented.

  • PDF

High-precision Micro-machining using Vibration Cutting (진동절삭을 이용한 고정도 미세가공)

  • Son, Seong-Min;Lim, Han-Seok;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle (드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향)

  • Chung Won-Jee;Lee Choon-Man;Lee Jung-Hwan;Lim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

The Implement of a high Speed Machining Software by Look-ahead Algorithm (선독 알고리즘에 의한 고속 가공 소프트웨어 구현)

  • 이철수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.252-257
    • /
    • 2000
  • This paper describes a look-ahead algorithm of PCNC(personal computer numerical control). The algorithm is based on acceleration/deceleration before interpolation never including a command error and determines a velocity value in end point of each block(or start point of each block). The algorithm is represented as following; 1) calculating two maximum arrival velocity(v1, v2) by a acceleration value, a command velocity and distance in a previous block and a next block, 2) getting a tangent velocity(v3) of the adjacent blocks, 3) choosing a minimum value among these three velocities, and 4) setting the value to a velocity of a start point of the next block(or a end point of the previous block). The proposed look-ahead algorithm was implemented and tested by using a commercial RTOS(real time operation system) on the MS-Windows NT 4.0 in a PC platform. For interfacing to a machine, a counter board, a DAC board and a DIO board were used. The result of the algorithm increased a machining precision and a machining speed in many short blocks.

  • PDF

The Implement of 2-Step Motion Control Loop and Look Ahead Algorithm for a High Speed Machining (고속가공을 위한 2단계 모션 제어 루프와 선독 알고리즘의 구현)

  • 이철수;이제필
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-81
    • /
    • 2000
  • This paper describers a look ahead algorithm of PC-NC(personal computer numerical control). The algorithm is based on acceleration/deceleration before interpolation which doesn\`t include a command error and determines a feedrate value at the end point of each block(or start point of each block). The algorithm is represented as following; 1) calculating two maximum arrival feedrates(F$_1$,F$_2$) by an acceleration value, a command feedrate, and the distance of a NC block, 2) getting a tangent feedrate (F$_3$) of the adjacent blocks, 3) choosing a minimum value among these three feedrates, and 4) setting the value to a feedrate of a start point of the next block(or a end point of the previous block). The proposed look ahead algorithm was implemented and tested by using a commercial TROS(real time operation system) on the MS-Windows NT 4.0 in a PC platform. For interfacing to a machine, a counter board, a DAC board and a DIO board were used. The result of the algorithm increased a machining precision and a machining speed in many short blocks.

  • PDF

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

Machinability evaluation of non-coated end mill tool fabricated by ultra-fine WC (초미립 WC로 제작된 무코팅 엔드밀 공구의 가공성 평가)

  • Kim D.H.;Kwon D.H.;Kang I.S.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.13-14
    • /
    • 2006
  • The quality of tool material is very important factor in machining evaluation. The characteristics of tungsten carbide, such as grain size and hardness, and density are depending on the variation of Co composition and WC size. In this study, the non-coated end mill which is made of ultra-fine tungsten carbide is investigated by measuring tool wear and tool lift test. The machining test is conducted with high hardened workpiece under high-speed cutting condition.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in High-speed Automatic Lathe for Precision Machining (정밀가공용 고속 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joohwan;Lee, YunChul;Joo, KangWo;Jo, Eunjeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in high-speed automatic lathe for precision machining. An automatic lathe operating at about 25,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 0.14MPa, the maximum deformation amount was $17.9{\mu}m$, and the natural frequency was 364.72Hz. The resonance frequency was calculated as 718Hz, and the stability was confirmed by being in the range of 400Hz or more, which is the processing condition.

  • PDF

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF