• Title/Summary/Keyword: High Speed Precision Machining

Search Result 351, Processing Time 0.035 seconds

Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method (냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가)

  • Hwang I.O.;Kwon D.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

A Study of th stick-slip by feed of the machining center (공작기계 이송시 스틱슬립에 관한 고찰)

  • 정성택;박종남;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.420-424
    • /
    • 1997
  • n the ballscrew slide system the ~najor problems in accomplishing the high-speed and high-precision are the friction between elements and the decrease of axial stiffness. Especially the friction on the guide have a bad effect on the precision of slidlng. Furthermore stick-slip occur when the low stiffness of slide system. The sticli-slip have a bad influence on the precision. In this research, the affection of stick-slip friction to the precision of the slide system is studied and the possible solution of the precision is proixjsed.

  • PDF

A Study on the Optimization of Servo System Originating to High-Speed Fixed Duty Processing (고속 고정도가공에 기인하는 Servo System의 최적화와 기능특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-il;Choi, Myung-Hwan;Baek, Sang-Yeob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2009
  • The most dominate aspect in machine works using CNC devices in industrial production processes is the precision of the product and the Cycle Time. To this day, many studies on the external factors of the technology to reduce the Cycle Time have advanced amid to the advancements in cam soft development for manual programs and the numerous studies on high speed and precision machining. This study experimented various functions of the sequence pattern flow and arranged system development technologies of past few years to develop and applicate various usage of adjustment factors within the CNC, so it would be more understandable to the user and would enable them to make high speed and precision products more faster develop and. In order to reduce the Cycle Time, the mechanism of machine tools has to be analysed and applied, in addition to program reduction and improvement of the manufacture process.

  • PDF

A Study on the Machining Characteristics for Micro Endmilling by using Ultrahigh-Speed Air Turbine Spindle (초고속 스핀들에 의한 마이크로 엔드밀링의 가공특성에 관한 연구)

  • Kwon D.H.;Kang I.S.;Kim J.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. The appearance of ultra-precision feed mechanism and the development of control system make it possible to process parts in sub millimeter scale by mechanical methods. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. So, micro stairs have been trying to cut by using high revolution air turbine spindle and micro-endmill, and studying for magnitude of cutting force. This investigation deals removal characteristics of burr generated by micro endmilling process. Also, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. In micro endmilling, the material removal rate(MRR) and cutting forces are very small. This paper presents an investigation on the machining characteristics for micro stairs by using ultrahigh-speed air turbine spindle in machining.

  • PDF

A Study on CAD/CAM Pocket Processing using the High Speed Machine (고속가공기를 이용한 CAD/CAM 포켓가공에 관한 연구)

  • Yoo, Chun-Hea;Lee, Yuk-Hyung;Song, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.32-38
    • /
    • 2004
  • Recently, the system of high speed milling(HSM) is widely used for reducing the operation time and maximizing efficiency of work. The most research of high speed milling system is still leaves much to be desired. Specially the research of mass pocket high speed processing with high precision is the first and probably the last. So this paper showed mass pocket processing of high precision with a duralumin and then confirmed a cause of inferior goods through the CAD/CAM pattern simulation and experimentation. And this paper showed high speed processing system reduce the rate of inferior from this optimal pattern.

  • PDF

A study on the internal high-speed grinding (고속 내면 연소에 관한 연구)

  • An, Sang-Ook;Inasaki, Ichiro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-196
    • /
    • 1993
  • Internal high speed grinding under several high grinding wheel speed condition has been performed in this study for the effects have analyzed and compared with the grinding power, grinding tangential force and accuracy of surface with the carbon tool steel(SK3). The following results have been obtained: (1) Under the workpiece speed constant condition, increasing the grinding speed, the tangential force is decreased, and on the contrary, accuracy of surface is improved. (2) Under the speed ratio (V$_{w}$/V$_{s}$) contant condition it is possible to increase the high machining efficiency constraint to tangential grinding force constant.ant.

  • PDF

A study on the development of rapid prototyping system using 5 axis machining (5축 가공을 이용한 쾌속조형 시스템의 개발)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1011-1014
    • /
    • 2002
  • In order to reduce the lead-time and cost, many useful methods have been applied to Rapid Prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also owen practical advantages such as precision and versatility. However, traditional 3 axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5 axis machining has been developed to overcome those limitations. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

A Study on the Detection and Diagnosis of the Abnormal Machining Process Using Current Signal (전류신호를 이용한 이상가공상태 검출ㆍ진단에 관한 연구)

  • 서한원;유기현;정진용;서남섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.212-216
    • /
    • 1996
  • Recently, with the development of NC and CNC machine tools and the high labor wage, the cutting process requires the high speed and automatic system which uses industrial robots and the flexible manufacturing system(FMS) that combines several machine tools. In this system, the whole system can be influenced by just one of the machin tools. So it needs to detect a problem and to solve it immediately In in-process state. The monitoring system through measuring the motor current with current sensor has been attracting the attention of lots of researchers view of its low cost and flexibility. By using the pattern discriminant with the detected three-phase-current signal, that is, $I_{RMS}$, a system which can monitor and analyze abnormal machining process condition of the workpiece during the machining will be able to be developed in this research.h.

  • PDF