• Title/Summary/Keyword: High Speed PMSM

Search Result 151, Processing Time 0.022 seconds

Full Fuzzy-Logic-Based Vector Control for Permanent Magnet Synchronous Motors (영구자석 동기 모터를 위한 풀 퍼지 로직 기반 벡터제어)

  • Yu, Jae-Sung;Yoo, Young-Hwan;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.100-106
    • /
    • 2006
  • This paper proposes a full fuzzy-logic-based vector control for a permanent-magnet synchronous motor (PMSM). The high-performance of the proposed fuzzy logic control (FLC)-based PMSM drive are investigated and compared with the conventional proportional-integral (PI) controller at different conditions, such as step change in command speed and load and etc. In the experimental and simulation the FLC is employed in the speed and current controller. The experimental results show to be a suitable replacement of the conventional PI controller for the high-performance drive system.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

The Sensorless Control of PMSM Using the Coordinate Transform and Differential Method (좌표 변환과 미분 기법을 이용한 PMSM의 센서리스 제어)

  • Choi, Chul;Won, Tae-Hyun;Park, Sung-Jun;Park, Han-Woong;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • PMSM(permanent magnet synchronous motor) are widely used in industrial and home appliance because of their high torque to inertia ratio, superior power density, and high efficiency For the high control performance, accurate information of rotor position Is essential. In recent, sensorless algorithms are much studied due to high cost problem of position sensor and low reliability in harsh environment. In the proposed method, a differential linkage flux is used for the estimation of rotor position. The differential magnetic field flux is calculated by the voltage equations and measured phase current without any integration and differential calculus. Instead of linkage flux calculation with differential operation, a new mathematical differential method is introduced by a-$\beta$ transformation. The proposed novel position sensorless speed control scheme is verified through experimental results.

Operating Characteristics of High Speed PM Synchronous Generator for Microturbine (마이크로터빈용 고속 영구자석 동기발전기 운전 특성)

  • Ahn J. B.;Jeong Y. H.;Kang D. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.141-143
    • /
    • 2004
  • Distributed generation(DG) using microturbine will be adopted widely because of its various usages and merits such as high heat efficiency, environmental-friendliness. Commercialized DG using microtubine that rotates up to $60,000\~100,000[rpm]$ converters mechanical power to electricity by permanent magnet synchronous machine. This paper presents comparative test and simulation results of PMSM as generator. Test was done by diode rectifier and inverter. Parameters used in the simulation are driven from FEM analysis. Under various speed and load conditions, V-I characteristics matches well and it suggests the possibility of high speed PMSM as generator. DG operating at stand alone and grid connection mode will be developed.

  • PDF

Addition of External Inductor for Reduction of current Ripple in High-speed small PMSM Drive system (고속 소형 PMSM 구동장치의 전류 리플 저감을 위한 인덕터 추가 기법)

  • Park, Jaesung;Park, Sangwook;Jeon, Geumsang;Ahn, Heewook
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.215-216
    • /
    • 2012
  • 본 논문은 고속 소형 PMSM을 벡터제어 방식으로 구동하는 장치에서 전류 리플을 저감하기 위한 방법으로서 외부 인덕터를 추가하는 기법을 다룬다. 고속 소형 PMSM은 설계 특성상 인덕턴스가 매우 작기 때문에 전류 리플이 크게 나타나는데, 이오 인해 전동기 코어에서의 히스테리시스 손실이 증가하고 제어 시스템이 불안정하게 된다. 이 문제를 해결하면서도 벡터제어를 용이하게 할 수 있도록 인덕터를 추가하는 기법을 검토하고, 적절한 외부 인덕턴스 값을 정량적으로 결정하는 방법을 제안한다. 100 W급 50,000 rpm의 PMSM 시스템에 대하여 시뮬레이션을 실시하여 제안된 기법의 타당성을 확인한다.

  • PDF

The Pitch/Turning Control Driver Design Modeling of Permanent Magnet Synchronous Motor (영구자석형 동기전동기의 고저/선회 제어용 드라이버 설계 모델링)

  • Lee, Chun-Gi;Hwang, Jeong-Won;Lee, Joung-Tae;Yang, Bin;Lim, Dong-Keun;Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The purpose of this paper is to control of the low-speed, high-precision PMSM 2-axes pitch/turning. In this paper, apply the PAM-PWM inverter for it. However, The PAM-PWM inverter, control algorithms and hardware is complex. But it is possible to improve the performance in the low-speed operation can reduce the effect of the PWM ripple and Dead Time of inverter by applying suitable DC-bus voltage control. The direct driver PMSM(Permanent Magnet Synchronous Motor) configured to vector control part, PAM control part and the other controller. The vector control part includes PI current, speed control, additional space vector modulation. PAM control part has to have PI voltage controller and P current controller for DC-bus voltage control. Besides, the motor position estimator, the speed estimator and the counter electromotive force and Dead Time Compensation are added. With this arrangement, PMSM was driven with a low pole pitch/turning by performing the current control to the current command or torque command is the paper. As a result, it was possible to minimize the disturbance component that appears in the drive in proportion to the DC voltage magnitude. The use of a hydraulic drive method for a two-axis bubble column is a typical tank. When using the PWM PAM inverter driver is in the turret can be driven by high-precision, low vibration, low noise compared to the hydraulic drive may contribute to the computerization of the turret.

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer (반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.168-175
    • /
    • 2009
  • This paper proposes an enhanced algorithm for sensorless control of 45,000rpm/22kw type Permanent Magnetic Synchronous Motor (PMSM) with air-foil bearing. The proposed algorithm is based on iterative adaptive flux observer for sensorless control of the motor in wide speed range by on-line estimating angle and velocity of rotor. Simulation error between actual and estimated angle of rotor is analyzed to enhance characteristics of frequency response of conventional adaptive flux observer, which results in stable response in wide range of speed. Using the iteration number for stable phase-delay characteristics, the observer enhances the dynamic characteristics of the observer within current control period. The experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

Sensorless Speed Control for PMSM Using an Improved Full-Order Flux Observer (개선된 전차원 자속 관측기를 사용한 영구자석 동기전동기의 센서리스 속도 제어)

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.565-572
    • /
    • 2013
  • The sensorless speed control using the improved full-order flux observer for PMSM is proposed in this paper. A conventional full-order flux observer has a drawback that the estimated flux of this observer contains the ripple component at the low speed range due to the increased gains of the convectional full-order flux observer. The improved full-order flux observer with the modified gains guarantee the improved estimation performance without ripple component at the from zero to high speed range. To identify the performance of proposed observer, the simulation and experiment are conducted and this performance is compared with the conventional full-order observer.

Speed Control for PMSM in Elevator Drive System Using Fuzzy Controller (퍼지제어기를 이용한 엘리베이터 구동용 영구자석형 동기전동기의 속도제어)

  • Hwang S. M.;Yu J. S.;Won C. Y.;Kim K. S.;Choi S. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.655-659
    • /
    • 2004
  • This paper proposes a fuzzy logic based vector control for the gearless traction machine drive systems using a permanent-magnet synchronous motor (PMSM). The performance of the proposed Fuzzy Logic Control(FLC)-based PMSM drive are investigated and compared to those obtained from the conventional PI controll-based drive system. We have confirmed theoretically and experimentally at different dynamic operating conditions such as step change in command speed, step change in load, etc. The comparative experimental results show that the FLC is more robust and, hence, found to be a suitable replacement of the conventional Pl controller for the high-performance elevator drive system.

  • PDF