• Title/Summary/Keyword: High Speed Networking

Search Result 127, Processing Time 0.023 seconds

Greedy Precedent Frame Transmission Technique in VOD System (VoD 시스템에서 탐욕적 선행 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.603-612
    • /
    • 2010
  • Recently, with the advance of computing and networking technique, the high speed internet becomes widespread, however, it is still hard job to do streaming the media which requires high network bandwidth over the internet. Previous VoD system researches for streaming over the internet mainly proposed techniques that controls the QoS(Quality of Service) of the media in proportion to the network status. Though, this could be the solution for the service provider while the service user who wants constant QoS may not satisfy with variable QoS. In the paper, we propose greedy precedent frame transmission technique, GPFT, for guarantee of constant QoS. In GPFT, Streaming VoD server prefetches precedent frames and transmits the frame greedily by increasing the frame transmission rate while the available network bandwidth is high. The GPFT uses the prefetched precedent frames to guarantee the QoS while the available network bandwidth is low. The experiment result shows that the proposed GPFT could guarantee the constant QoS by prefetching the frames adaptively to the network bandwidth with the characteristic of video stream.

A Performance Analysis of the Virtual CellSystem for Mobile Hosts (이동 호스트를 위한 가상 셀 시스템의 성능 분석)

  • Lim, Kyung-Shik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2627-2640
    • /
    • 1998
  • In this paper, we analyze the performance of the virtual cell system[1] for the transmission of IP datagrams in mobile computer communications. A virtual cell consistsof a group of physical cells shose base stationsl are implemented b recote bridges and interconnected via high speed datagram packet switched networks. Host mobility is supported at the data link layer using the distributed hierachical location information of mobile hosts. Given mobility and communication ptems among physical cells, the problem of deploying virtual cells is equivalent to the optimization cost for the entire system where interclster communication is more expesive than intracluster communication[2]. Once an iptimal partitionof disjoint clusters is obtained, we deploy the virtual cell system according to the topology of the optimal partition such that each virtual cell correspods to a cluser. To analyze the performance of the virtual cell system, we adopt a BCMP open multipel class queueing network model. In addition to mobility and communication patterns, among physical cells, the topology of the virtual cell system is used to determine service transition probabilities of the queueing network model. With various system parameters, we conduct interesting sensitivity analyses to determine network design tradeoffs. The first application of the proposed model is to determine an adequate network bandwidth for base station networking such that the networks would not become an bottleneck. We also evaluate the network vlilization and system response time due to various types of messages. For instance, when the mobile hosts begin moving fast, the migration rate will be increased. This results of the performance analysis provide a good evidence in demonsratc the sysem effciency under different assumptions of mobility and communication patterns.

  • PDF

Implementation of a QoS routing path control based on KREONET OpenFlow Network Test-bed (KREONET OpenFlow 네트워크 테스트베드 기반의 QoS 라우팅 경로 제어 구현)

  • Kim, Seung-Ju;Min, Seok-Hong;Kim, Byung-Chul;Lee, Jae-Yong;Hong, Won-Taek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.35-46
    • /
    • 2011
  • Future Internet should support more efficient mobility management, flexible traffic engineering and various emerging new services. So, lots of traffic engineering techniques have been suggested and developed, but it's impossible to apply them on the current running commercial Internet. To overcome this problem, OpenFlow protocol was proposed as a technique to control network equipments using network controller with various networking applications. It is a software defined network, so researchers can verify their own traffic engineering techniques by applying them on the controller. In addition, for high-speed packet processing in the OpenFlow network, programmable NetFPGA card with four 1G-interfaces and commercial Procurve OpenFlow switches can be used. In this paper, we implement an OpenFlow test-bed using hardware-accelerated NetFPGA cards and Procurve switches on the KREONET, and implement CSPF (Constraint-based Shortest Path First) algorithm, which is one of popular QoS routing algorithms, and apply it on the large-scale testbed to verify performance and efficiency of multimedia traffic engineering scheme in Future Internet.

Structural Equation Model for Korea Internet Infrastructure Customer Satisfaction Index(KIICSI) (구조방정식을 이용한 초고속 국가망 서비스의 고객만족도 평가체계 개발)

  • Shin Sun Young;Shin Sang-Chul;Moon Tae Hee;Sohn So Young
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.220-235
    • /
    • 2005
  • Internet Service Quality has been constantly the center of attention to Internet Service Providers. The KII project plan (Korea Information Infrastructure) aims to build broadband backbone networks mainly through optical fiber cables and ATM switches and to Provide the government ministries, local authorities and non-profit organizations with high-speed, highly capable broadband access to these networks at reasonable rates. The KB service model, however, is different from other Internet Service models much in the same way SP (Service Provider) and NP (Network Provider) differ from each other. In this paper, we evaluate KII service according to various customer satisfaction indicators under the methodologies and categories as put forth in both the ACSI (American Customer Satisfaction Index) and SEM (Structural Equation Model). We use a structural equation model (SEM) to demarcate the Korea Information Infrastructure Customer Satisfaction Index (KIICSI) in relation to network service quality. The results of our study suggest some strategies for the KII Project need to be modified and effectively implemented in order to increase the satisfaction level of the KII customers.

Web Prefetching Scheme for Efficient Internet Bandwidth Usage (효율적인 인터넷 대역폭 사용을 위한 웹 프리페칭 기법)

  • Kim, Suk-Hyang;Hong, Won-Gi
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.3
    • /
    • pp.301-314
    • /
    • 2000
  • As the number of World Wide Web (Web) users grows, Web traffic continues to increase at an exponential rate. Currently, Web traffic is one of the major components of Internet traffic. Also, high bandwodth usage due to Web traffic is observed during peak periods while leaving bandwidth usage idle during off-peak periods. One of the solutions to reduce Web traffic and speed up Web access is through the use of Web caching. Unfortunately, Web caching has limitations for reducing network bandwidth usage during peak periods. In this paper, we focus our attention on the use of a prefetching algorithm for reducing bandwidth during peak periods by using off-peak period bandwidth. We propose a statistical, batch, proxy-side prefetching scheme that improves cache hit rate while only requiring a small amount of storage. Web objects that were accessed many times in previous 24 hours but would be expired in the next 24 hours, are selected and prefetched in our scheme. We present simulation results based on Web proxy and show that this prefetching algorithm can reduce peak time bandwidth using off-peak bandwidth.

  • PDF

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Interaction Between TCP and MAC-layer to Improve TCP Flow Performance over WLANs (유무선랜 환경에서 TCP Flow의 성능향상을 위한 MAC 계층과 TCP 계층의 연동기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • In recent years, the needs for WLANs(Wireless Local Area Networks) technology which can access to Internet anywhere have been dramatically increased particularly in SOHO(Small Office Home Office) and Hot Spot. However, unlike wired networks, there are some unique characteristics of wireless networks. These characteristics include the burst packet losses due to unreliable wireless channel. Note that burst packet losses, which occur when the distance between the wireless station and the AP(Access Point) increase or when obstacles move temporarily between the station and AP, are very frequent in 802.11 networks. Conversely, due to burst packet losses, the performance of 802.11 networks are not always as sufficient as the current application require, particularly when they use TCP at the transport layer. The high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithm, resulting in performance degradation. In order to overcome the limitations of WLANs environment, MAC-layer LDA(Loss Differentiation Algorithm)has been proposed. MAC-layer LDA prevents TCP's timeout by increasing CRD(Consecutive Retry Duration) higher than burst packet loss duration. However, in the wireless channel with high packet loss rate, MAC-layer LDA does not work well because of two reason: (a) If the CRD is lower than burst packet loss duration due to the limited increase of retry limit, end-to-end performance is degraded. (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily by Reducing the drainage speed of the network buffer due to the increase of CRD. In this paper, we propose a new retransmission module based on Cross-layer approach, called BLD(Burst Loss Detection) module, to solve the limitation of previous link layer retransmission schemes. BLD module's algorithm is retransmission mechanism at IEEE 802.11 networks and performs retransmission based on the interaction between retransmission mechanisms of the MAC layer and TCP. From the simulation by using ns-2(Network Simulator), we could see more improved TCP throughput and energy efficiency with the proposed scheme than previous mechanisms.