• Title/Summary/Keyword: High Speed Camera visualization

Search Result 138, Processing Time 0.034 seconds

Cavitation Observation and Visualization of the Gap Flows on a Rudder Influenced by Propeller Slipstream and Hull Wakes (프로펠러 및 선미반류에 의해 영향을 받는 혼-타의 캐비테이션 관찰 및 간극 유동에 대한 가시화 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Ahn, Jong-Woo;Park, Sun-Ho;Heo, Jae-Kyung;Yu, Byeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.238-246
    • /
    • 2008
  • In the present study, the influences on the gap cavitaiton of the semi-spade rudder are investigated experimentally in the condition with propeller and hull wakes. To reduce the scale effect in the given experimental conditions, 1/28.5-scale-down models of propeller and rudder are manufactured. We have the propeller rotate ahead of the rudder, inducing the three dimensional effects originated from the propeller action. Experimental methods are composed of the cavitation observation using high speed camera, PIV (particle image velocimetry) measurements to visualize the cavitaition and flows around the gap. The propeller slipstream affects both of the gap flows and cavitation of the rudder.

A Study about Vortex Flow Characteristics on Delta wing by Wime-Resolving PIV (시간해상도 PIV를 이용한 델타형 날개에서의 와류유동특성에 관한 연구)

  • Lee Hyun;Kim Beom-Seok;Sohn Myong-Hwan;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.105-108
    • /
    • 2002
  • Highly swept leading edge extension(LEX) applied to delta wings has greatly improved the subsonic maneuverability of contemporary fighters. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack$(15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ})$ and six measuring sections$(30\%,\;40\%,\;50\%,\;60\%,\;70\%,\;80\%)$ of chord length. Distributions of time-averaged velocity vectors and vorticities over the delta wing model were compared along the chord length direction. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

  • PDF

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Visualization of cross-sectional two-phase flow structure during in-tube condensation (관내 응축 시 2상유동 단면구조의 가시화)

  • Pusey, Andree;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.18-24
    • /
    • 2016
  • This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.

Characteristics of Bubble-driven Flow with Varying Flow Rates by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 유량에 따른 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble flow in a rectangular water tank is studied. The Time-resolved PIV technique is adopted for the quantitative visualization and analysis. 532 nm Diode CW laser is used for illumination and orange fluorescent particle images are acquired by a PCO 10bit high-speed camera. To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is changed from 2 l/min to 4 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by the POD analysis technique. It is observed that the large scale counterclockwise rotation and main vortex is generated in the upper half depth from the free surface and one quarter width from the sidewall. When the flow rates are increased, the main vortex core is moved to the side and bottom wall direction.

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

Experimental Flow Visualisation of an Artificial Heart Pump

  • Tan, A.C.C.;Timms, D.L.;Pearcy, M.J.;McNeil, K.;Galbraith, A.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.210-216
    • /
    • 2004
  • Flow visualization techniques were employed to qualitatively visualize the flow patterns through a 400% scaled up centrifugal blood pump. The apparatus comprised of a scaled up centrifugal pump. high speed video camera. Argon Ion Laser Light Sheet and custom coded particle tracking software. Reynolds similarity laws are applied in order to reduce the rotational speed of the pump. The outlet (cutwater) region was identified as a site of high turbulence and thus a likely source of haemolysis. The region underneath the impeller was identified as a region of lower flow.

Experimental Study on Flapping of a Coleoptera (딱정벌레목 곤충의 날갯짓에 대한 실험적 연구)

  • Yoo, Yong-Hoon;Jang, Doo-Hwan;Park, Hoon-Cheol;Byun, Yong-Hwan;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • A flow visualization is conducted to investigate a flight characteristics of a Coleoptera and an effect of flapping elytra was considered in this study. Also the movements of outer wing(elytra) and inner wing is analyzed using High Speed Camera. As a result of this experiment, in case of flapping insect, three mechanisms to generate lift is confirmed. A small movement of outer wing(elytra) is confirmed and the effect of outer wing(elytra) is estimated.

A Study on Sprny and Combustion Characteristics by Temperature of Biodiesel Fuel (바이오디젤 연료온도에 따른 분무 및 열소특성에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.152-157
    • /
    • 2008
  • The biodiesel becomes one of the favorite alternative fuel applied to diesel engines. This research aims to understand the physics of spray and combustion characteristics of a biodiesel fuel in a constant volume chamber. For spray visualization, biodiesel was injected into a combustion chamber and a high speed camera was applied at various combustion conditions. To investigate heat-release rates and flame propagations, spark was ignited on a hydrogen fuel for the premixed combustion and then biodiesel was injected directly. In addition, parametric study was made by various geometries of combustion chambers and temperatures of fuels and injection pressures. This technology may contribute to improve the performance of bio-diesel engine and reduce emissions in future.

Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet (연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구)

  • Lee, Keun-Hee;Kim, Sa-Yop;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF