• Title/Summary/Keyword: High Speed BLDC Motor

Search Result 163, Processing Time 0.024 seconds

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Spindle Motors using SMC for HDD (SMC를 이용한 HDD용 스펀들모터)

  • Kim, Sang-Uk;Kim, Jin-Hwan;Kim, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.150-154
    • /
    • 2005
  • This paper is presented for the development of the brushless DC(BLDC) spindle motors for hard disk drives. A new BLDC Motor has the use of insulated, compacted, iron powder for the armature core material of BLDC motors. Insulated iron powder in this paper is generally called soft magnet composite(SMC). The SMC is used for the stator of the motor instead of the laminated steel core. The motor used by SMC can have the good advantages in condition of the high frequency input power and small sized motor. It gets much more high efficiency than laminated steel core at same input power. The proposed motor has a technique of speed sensorless control. Experimental results show the performance of the proposed BLDC spindle motors for an HDD.

  • PDF

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

A Study on Performance of a Variable-Speed Turboblower (가변속 고속블로워의 성능특성에 관한 연구)

  • Choi, Bum-Seog;Park, Moo-Ryong;Hwang, Soon-Chan;Park, Joon-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.43-49
    • /
    • 2004
  • A turbo blower, driven by a high-speed blushless DC motor, was designed as a efficient substitute of a ring blower or a roots blower. Computational analysis and performance tests have been performed to investigate performance characteristics of the blower. Experimental measurements showed that the blower has a good stability margin. This paper gives an outline of design, computational flow analysis and performance test for aerodynamic evaluation of the variable speed turboblower.

Designed and Implement of the Discrete Time Kalman Filter for Speed Estimation of the Sensorless Hub Wheel Motor (속도센서가 없는 허브-휠 전동기의 속도추정을 위한 이산시간 칼만필터의 설계 및 구현)

  • Jeon, Yong-Ho;Yee, Gi-Seo;Cho, Whang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • Since hub wheel BLDC Motor consisted of wheel and BLDCM (Brushless DC Motor) without gear reducer has high efficiency and low operation noise, it can be utilized to a driving wheel at some light rail systems. However, installing sensors for speedometer on a Hub-Wheel motor is not easy, so it requires a different speed control mechanism method for speed measurement. This paper introduces a speed control method based on simple mathematical model which uses discrete Kalman Filter to estimate and control the speed of the motor.

Digital Controller of BLDC Motor Using DSP (DSP를 이용한 BLDC 전동기의 디지털 제어기)

  • Cho, Gyu-Man;Kim, Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.988-990
    • /
    • 2000
  • This paper presents the software control of a brush-less DC motor. Not only speed and current controls but also a real-time identification of the motor parameters can be implemented by software using the digital signal processor (DSP) TMS320F240. The DSP Controller TMS320F240 from Texas Instruments is suitable for a wide range of motor drives. TMS320F240 provides a single chip solution by integrating on-chip not only a high computational power but also all the peripherals necessary for electric motor control. The main benefits are increased system reliability and cost reduction of the overall system. The present paper describes how a speed controlled brushless DC drive can be implemented using TMS320F240.

  • PDF

The Development of a super high speed motor driving system for the direct drive type turbo compressor (직접 구동방식의 터보 압축기를 위한 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최중경
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.219-222
    • /
    • 2002
  • There are screw, reciprocating type turbo compressor by structure in an air compressor which is essential equipment on the industrial spot. Recently, the application range of a turbo compressor tend to be wide gradually. And this type of compressor needs high speed rotation of impeller in structure so high ratio gearbox and conventional induction motor driving required. This mechanical system have results of increased moment of inertia and mechanical friction loss. Recent studies of modern turbo compressor have been applied to developing super high speed BLDC motor and driver which remove gearbox that make its size small and mechanical friction loss minimum. To accomodate this tendency, we tried to develope a super high speed motor drive system for 150Hp, 70,000rpm direct drive Turbo compressor using DSP(Digital Signal Processor) and SVPWM(Space Vector Modulation PWM) technique. The results of this specific application show that super high speed driver and controller could be implemented well with digital electronics.

  • PDF

Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM (회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력)

  • 황근배;김경태;황상문
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF