• 제목/요약/키워드: High Shear Rate

검색결과 353건 처리시간 0.029초

고속전단에 의한 폴리카보네이트/ABS 블렌드의 열분해 및 기계적 특성 연구 (Thermal Decomposition and Mechanical Properties of Polycarbonate/ABS Blends Prepared by High Shear Rate Processing)

  • 유재정;용다경;이한기;김대식;이형일;김선홍;이기윤;이승구
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.471-476
    • /
    • 2014
  • Polycarbonate(PC)/acrylonitrile-butadiene-styrene(ABS) 블렌드를 고속전단압출성형기로 1000 rpm 이상의 스크류 속도로 압출하여 전단속도와 전단시간에 따른 PC/ABS 블렌드의 열분해와 기계적 특성을 조사하였다. 고속전단 조건으로 스크류 회전속도를 1000에서 3000 rpm 범위에서 조절하였고, 전단부하시간은 10에서 40초로 변화를 주었다. 그 결과, 2000 rpm 이상의 고속전단을 통해 얻어진 시편의 경우, 고분자의 열분해의 발생으로 열분해 시작 온도가 낮아졌다. 스크류 회전속도와 전단부하시간에 따라 열분해에 의하여 시편의 인장강도와 신율이 낮아지는 결과를 얻었다. 이러한 PC/ABS 블렌드의 고속전단 조건에 따라 기계적 특성이 크게 변화하였으며 특히, 신율이 고속전단에 크게 영향을 받았다.

Experimental study on the shear thinning effects of viscosity index improver added lubricant by in-situ optical viscometer

  • Jang, Siyonl
    • Korea-Australia Rheology Journal
    • /
    • 제15권3호
    • /
    • pp.117-124
    • /
    • 2003
  • Elastohydrodynamic lubrication (EHL) film is measured under the condition of viscosity index improver added to base oil. In-situ optical contact method using the interference principle make the measuring resolution of ~5 nm possible and enables the measuring range all over the contact area of up to ~300 $\mu\textrm{m}$ diameter. What is more important to the developed method by the author is that the measurement of EHL film thickness is possible in the range from 100 nm to 2 $\mu\textrm{m}$, which is the regime of worst contact failures in precision machinery. Viscosity index improver (VII) is one of the major additives to the modem multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate (over $10^5 s^{-1}$) of general EHL contact regime. In order to exactly verify the VIIs performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to ~100 nm with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of ~5 nm, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

Rheological Characterization of Hydrogen Peroxide Gel Propellant

  • Jyoti, B.V.S.;Baek, Seung Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.199-204
    • /
    • 2014
  • An experimental investigation on the rheological behavior of gelled hydrogen peroxide at different ambient temperature (283.15, 293.15 and 303.15 K) was carried out in this study. The gel propellant was rheologically characterized using a rheometer, in the shear rate ranges of 1 to $20s^{-1}$, and 1 to $1000s^{-1}$. Hydrogen peroxide gel was found to be thixotropic in nature. The apparent viscosity value with some yield stress (in-case of shear rate 1 to $20s^{-1}$) drastically fell with the shear rate. In the case of the shear rate range of 1 to $20s^{-1}$, the apparent viscosity and yield stress of gel were significantly reduced at higher ambient temperatures. In the case of the shear rate range of 1 to $1000s^{-1}$, no significant effect of varying the ambient temperature on the gel apparent viscosity was observed. The up and down shear rate curves for hydrogen peroxide gel formed a hysteresis loop that showed no significant change with variation in temperature for both the 1 to $20s^{-1}$ and the 1 to $1000s^{-1}$ shear rate ranges. No significant change in the thixotropic index of gel was observed for different ambient temperatures, for both low and high shear rates. The gel in the 1 to $20s^{-1}$ shear rate range did not lead to a complete breakdown of gel structure, in comparison to that in the 1 to $1000s^{-1}$ shear rate range.

고속 전단 가공에 의한 PC/ABS 블렌드의 열적 물성 변화 연구 (Effects of the High Shear Rate Processing on the Thermal Properties of PC/ABS Blends)

  • 이형일;이한기;김대식;최석진;김선홍;유재정;용다경;이승구;이기윤
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.320-326
    • /
    • 2014
  • 본 연구에서는 polycarbonate(PC)/acrylonitrile-butadiene-styrene(ABS) 블렌드의 고속 전단 가공 조건하에서의 열적 물성 변화에 대해 연구하였다. 고전단 압출 성형기(NHSS2-28)를 이용하여 공정조건인 스크류 회전속도와 전단 부하 시간을 변화시키면서 가공하였다. 고전단 부하 실험 후에 유리전이온도($T_g$) 변화를 조사하여, 전단 부하 조건에 따라 약 $143^{\circ}C$에서 약 $133^{\circ}C$로 감소하는 경향을 관찰하였다. 열 중량 분석(TGA)을 통해 열분해 현상을 관찰하여 전단을 가하지 않은 경우 ABS와 PC의 분해곡선이 뚜렷한 두 단계로 나타났으나, 고속 전단 가공을 한 경우 분해하는 경향이 일직선상으로 변화되어 나타났다. 이에 대한 물성변화의 원인을 조사하기 위해 주사전자현미경(SEM)으로 관찰하여 분산상의 크기 또한 감소함을 확인하였고, 만능 재료 시험기(UTM)를 이용하여 신율이 고속 전단 가공을 한 경우, 소폭 감소하다가 특정 조건 이상에서는 급격한 감소를 보임을 관찰하였다. 결론적으로 적정한 고속 전단 응력 조건 이하에서는 PC/ABS 블렌드의 유리전이온도가 수렴하고, 적정 조건 이상에서는 유리전이온도가 급감하므로 전단응력에 의해 열화되는 것을 확인하였다.

NiAl/Ni 미세적층복합재료의 고속변형거동 (High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites)

  • 김희연;김진영;정동석;;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Rheological Properties and Particle Size Distribution of Northeast Mixed Hardwood for Enzymatic Saccharification Processing with High Substrates Loading

  • Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권5호
    • /
    • pp.56-65
    • /
    • 2008
  • In this paper experimental results are presented for the rheological behavior of high-solids saccharification of mixed northeast hardwood as a model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20 percent slurry concentrations with constant enzyme concentrations were performed under variable rotational speed of a viscometer (2.0 to 200 RPM) at combined temperatures (50 to $30^{\circ}C$) for the initial four hours. The viscosities of saccharification slurries observed were in the ranges of 0.024 to 0.028, 0.401 to 0.058, and 0.840 to 0.087 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20 percent initial solids (w/v) respectively. The fluid behavior of the suspensions was modeled using the power-law, the Herschel-Bulkley, the Casson, and the Bingham model. The results showed that broth slurries were pseudoplastic with a yield stress. The model slope increased and the model intercept decreased with increasing fermentation time at shear rates normal for the fermentor. The broth slurries exhibited Newtonian behavior at high and low shear rates during initial saccharification process. The solid particle size ranged from 57.8 to $70.0{\mu}m$ for $40^{\circ}C$ and from 44.0 to 57.5 11m for combined temperatures at 10, 15, and 20 percent initial solids (w/v) respectively.

수성 알루미나/탄화규소 슬러리의 동결주조와 층상복합체의 제조: (I) 슬러리의 분산과 유동성 (Freeze Casting of Aqueous Alumina/Silicon Carbide Slurries and Fabrication of Layered Composites: (I) Dispersion and Rheology of Slurries)

  • 양태영;조용기;김영우;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.99-104
    • /
    • 2008
  • Zeta potential, sedimentation bulk density and rheology in the dispersion system have been studied in terms of solid loading (40-55 vol%), and types of additives. Ammonium polymethacrylate, glycerol, ethoxylated acetylenic diol, and polyvinyl alcohol have been used as the dispersant, cryo-protectant, surfactant, and binder, respectively. Sedimentation density greatly increased upon adding dispersant; the effect was more pronounced with ionic alumina suspension compared with covalent silicon carbide. With further addition of cryo-protectant and surfactant to dispersant, the sedimentation density increased somewhat. The suspension viscosity generally behaviored in an opposite manner to the sedimentation density, i.e., high sedimentation gave low high-shear viscosity, indicative of low order structure formation in the suspended particles. Shear rate rheology in shear rate of $2-300\;sec^{-1}$ showed a shear thinning and its onset began at similar shear rate (${\sim}100\;sce^{-1}$), regardless of solid loading.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Al 2024-T3재에 있어서 Shear Lip의 생성과 그 영향에 관한 연구 (A Study on the Effect and Formation of Shear Lip for Al 2024-T3 Materials)

  • 최병기;오환교
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.41-46
    • /
    • 1993
  • This Paper aims to examine the effect of shear lip formation from cross-sections on fatigue crack propagation rate in order to study the fatigue fracture behavior of the high strength aluminum material (Al 2024-T3). The following tests were achieved from this research. 1. As a result of depressing shear lip artificially by adding a side groove to a specimen, it is shown that the propagation rate of fatigue crack is faster than that of general specimen. 2. Through the two-step load test, the phenomenon that the shear lip decreases In the part of changed load gets observed. Consequently It Is shown that the crack propagation rate gets faster.

  • PDF

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.