• Title/Summary/Keyword: High Shear Processing

Search Result 120, Processing Time 0.023 seconds

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

Effects of Molecular Weight of PC on Mechanical Properties of PC/ABS Blends using High-Shear Rate Processing

  • Lee, Eun Ju;Park, Hee Jung;Kim, Se Mi;Lee, Seung Goo;Lee, Kee Yoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.343-348
    • /
    • 2018
  • Each of the two polycarbonates (PC) of different molecular weights was blended with acrylonitrile-butadiene-styrene (ABS) under high-shear rate processing to afford PC/ABS. Sizes of ABS dispersed phases and mechanical properties of PC/ABS blends were investigated and high-shear rate processing of PC/ABS was carried out by changing screw speed and processing time. Prepared specimens were examined by scanning electron microscope (SEM) to observe morphology changes. Sizes of ABS dispersed phases in PC/ABS blends were observed to decrease gradually as screw speeds increased. Tensile strengths and elongations of specimens were investigated by universal testing method (UTM) to study the influence of molecular weight of PC exerting on PC/ABS blends. As a result, PC1/ABS blends (PC1: higher molecular weight PC) exhibited more strengthened properties than PC2/ABS (PC2: lower molecular weight PC). The tensile strength of PC1/ABS showed an increasing tendency when the screw speed increased, and the elongation did not show a significant decrease, but increased slightly with increasing shear time at a constant screw speed of 1000 rpm.

Effects of the High Shear Rate Processing on the Thermal Properties of PC/ABS Blends (고속 전단 가공에 의한 PC/ABS 블렌드의 열적 물성 변화 연구)

  • Lee, Hyeong Il;Lee, Han Ki;Kim, Dea Sik;Choi, Seok Jin;Kim, Seon Hong;Yoo, Jea Jung;Yong, Da Kyoung;Lee, Seung Goo;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.320-326
    • /
    • 2014
  • The effects of high shear rate processing on the thermal properties of PC/ABS blends were studied. It was executed by the high shear processing machine (NHSS2-28) at the varied conditions of screw speeds and loaded duration. After the samples were processed with NHSS2-28, the $T_gs$ were shifted from 143 to $133^{\circ}C$, and the behavior of degradation determined by TGA showed two distinct steps before high shear rate processing, while it showed a straight line after the processing. In order to provide the reasons of the properties, it was showen by SEM and UTM that the droplet sizes morphologically decreased after the processing, and the elongations decreased slightly until 1000 rpm of screw speed and then sharply decreased, according to the conditions of high shear rate processing. Therefore, it can be confirmed that $T_g,s$ of PC/ABS blends were considerably shifted under an appropriate high shear rate condition, and rapidly dropped, so that blends degraded above the condition, due to stress-induced degradation.

Shear Bond Strength Between Zirconia and Porcelain (지르코니아와 포세린의 전단결합강도)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Purpose: To examine the shear bond strengths of zirconia and veneering ceramic according to their surface processing. Methods: The test samples were divided into three groups: one without zirconia surface processing, one sandblasted, and one sandblasted then 3% etched. Then veneering ceramic was fired on all test samples, and their shear bond strengths were measured. Results: The test samples of the control group (Z1) showed the lowest shear bond strengths of $21.82{\pm}1.02$ MPa. The shear bond strengths of Z2 and Z3 ($28.25{\pm}0.72$ and $26.23{\pm}0.82$ MPa, respectively) were relatively higher than those of the control group. The fracture surface of the control group showed adhesive fractures while the test groups had relatively large numbers of cohesive fractures. Conclusion: The shear bond strength was high in the test groups with surface processing while the fracture surfaces showed compound fractures of adhesive and cohesive fractures.

Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing (PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구)

  • Lee, Dong Uk;Yong, Da Kyoung;Lee, Han Ki;Choi, Seok Jin;Yoo, Jae Jung;Lee, Hyung Il;Kim, Seon-Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.382-387
    • /
    • 2014
  • The PC/ABS blends were manufactured with high shear rate processing. Changes of the blend morphology were analyzed according to the screw speed and processing time. To find optimal conditions of the high shear rate processing of the PC/ABS blend, blend morphology and size of the dispersed phase, ABS, were observed with a SEM. Also, tensile properties of the PC/ABS blends were measured to investigate the effect of the high shear rate process with the screw speed of 500 rpm to 3000 rpm for processing times of 10s to 40s. Especially, to observe the dispersed phase of the PC/ABS blend clearly, fracture surfaces of the PC/ABS blend were etched with chromic acid solution. As screw speed and processing time increase, dispersed phase size of the PC/ABS blend decreases and mechanical properties of the blend decrease as well. Especially, at screw speed over than 1000 rpm of high shear rate processing, mechanical properties of the PC/ABS blends decrease drastically due to the degradation of the blend during the high shear rate processing. Consequently, the optimal condition of screw speed of the high shear processing of the PC/ABS blend is set at 1000rpm, in this study. Under optimal condition, the PC/ABS blend has relatively high mechanical properties with the relatively stable micro-structure having nanometer scale dispersed phase.

Effect of Groove Pressing on Deformation Texture in Aluminum (그루브 압축이 알루미늄 집합조직에 미치는 영향)

  • 김영석;박종진
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.421-427
    • /
    • 2000
  • The present study has focused on the development of shear textures during groove pressing in an aluminum alloy sheet. The shear components 23 and 13 developed during the groove pressing process. The process consisting of two steps of grooving and flattening each effectively gave rise to a high shear deformation In the sheet without reduction in thickness. The main texture component obtained from the process was the rotated Bs-orientation. The evolution of shear components during the groove pressing caused an increase in R-value of aluminum sheet comparing to a normally processed rolled sheet.

  • PDF

Prediction of Low Level Wind Shear Using High Resolution Numerical Weather Prediction Model at the Jeju International Airport, Korea (고해상도 수치모델을 이용한 제주국제공항 저층급변풍 예측)

  • Kim, Geun-Hoi;Choi, Hee-Wook;Seok, Jae-Hyeok;Kim, Yeon-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.88-95
    • /
    • 2021
  • In aviation meteorology, the low level wind shear is defined as a sudden change of head windbelow 1600 feet that can affect the departing and landing of the aircraft. Jeju International Airport is an area where low level wind shear is frequently occurred by Mt. Halla. Forecasting of such wind shear would be useful in providing early warnings to aircraft. In this study, we investigated the performance of statistical downscaling model, called Korea Meteorological Administration Post-processing (KMAP) with a 100 m resolution in forecasting wind shear by the complex terrain. The wind shear forecasts was produced by calculating the wind differences between stations aligned with the runways. Two typical wind shear cases caused by complex terrain are validated by comparing to Low Level Wind Shear Alert System (LLWAS). This has been shown to have a good performance for describing air currents caused by terrain.

Verification of Low-Level Wind Shear Prediction System Using Aircraft Meteorological Data Relay (AMDAR) (항공기 기상관측자료(AMDAR)를 이용한 인천국제공항 저고도 급변풍 예측시스템 검증)

  • Jae-Hyeok Seok;Hee-Wook Choi;Geun-Hoi Kim;Sang-Sam Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.59-70
    • /
    • 2023
  • In order to predict low-level wind shear at Incheon International Airport (RKSI), a Low-Level Wind Shear prediction system (KMAP-LLWS) along the runway take-off and landing route at RKSI was established using Korea Meteorological Administration Post-Processing (KMAP). For the performance evaluation, the case of low-level wind shear cases calculated from Aircraft Meteorological Data Relay (AMDAR) from July 2021 to June 2022 was used. As a result of verification using the performance evaluation index, POD, FAR, CSI, and TSS were 0.5, 0.85, 0.13, and 0.34, respectively, and the prediction performance was improved by POD, CSI, and TSS compared to the Low-Level Wind Shear prediction system (LDPS-LLWS) calculated using the Korea Meteorological Administration's Local Data Assimilation and Prediction System (LDAPS). This means that the use of high-resolution numerical models improves the predictability of wind changes. In addition, to improve the high FAR of KMAP-LLWS, the threshold for low-level wind shear strength was adjusted. As a result, the most effective low-level wind shear threshold at 8.5 knot/100 ft was derived. This study suggests that it is possible to predict and respond to low-level wind shear at RKSI. In addition, it will be possible to predict low-level wind shear at other airports without wind shear observation equipment by applying the KMAP-LLWS.

Design of Shear Fracture Specimens for Sheet Metals Using Finite Element Analyses (유한요소해석을 이용한 금속 판재용 전단 파단 시편 설계)

  • C. Kim;H.J. Bong;M.G. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2023
  • In this study, shear fracture specimens are designed using finite element analyses for the characterization of ductile fracture criteria of metal sheets. Many recently suggested ductile fracture criteria require experimental fracture data at the shear stress states in the model parameter identification. However, it is challenging to maintain shear stress states in tension-based specimens from the initial yield to the final fracture, and the loading path can be different for the different materials even with the same shear specimen geometries. To account for this issue, two different shear fracture specimens for low ductility/high ductility metal sheets are designed using the sensitivity tests conducted by finite element simulations. Priorly mechanical properties including the Hosford-Coulomb fracture criterion of the aluminum alloy 7075-T6 and DP590 steel sheets are used in the simulations. The results show that shear stress states are well-maintained until the fracture at the fracture initiation points by optimizing the notch geometries of the shear fracture specimens.

Analysis on Shear Stress During Drawing Process of Pearlite Structure of High Carbon Steel (고탄소강 펄라이트 조직의 인발 공정 시 전단응력의 해석)

  • Kim H. S.;Kim B. M.;Bae C. M.;Lee C. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.133-138
    • /
    • 2005
  • This paper presents a study on defects in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. High-carbon pearlite steel wire is characterized by its nano-sized microstructure feature of alternation ferrite and cementite. The likely fatigue crack is located on interface of the lamella structure where the maximum amplitude of the longitudinal shear stress and transverse shear stress was calculated during cyclic loading. The FEM is proposed for maximum shear stress from loading of lamella structure, and a method is predicted to analyze the likely fatigue crack generation. It is possible to obtain the important basic data which can be guaranteed in the ductility of high carbon steel wire by using FEM simulation.