• Title/Summary/Keyword: High Reynolds Number

Search Result 471, Processing Time 0.031 seconds

Electrodialysis with a channeled stack for high strength cadmium removal from wastewater

  • Kyung Jin, Min;Hyo Jin, An;Ah Hyun, Lee;Hyun-Gon, Shin;Ki Young, Park
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, high concentrations of cadmium-containing wastewater were treated by electrodialysis (ED) with a channel stack. The limiting current density (LCD), cadmium removal efficiency, and current efficiency were investigated under each experimental condition according to the Reynolds number (Re), membrane area, and pH. With the increase in the film area to 111, 333, 555, and 777 cm2 at Re (109.1), LCDs decreased to 408.11, 44.45, 35.32, and 13.64 A/m2, respectively. The highest cadmium removal efficiency (99.6%) and current efficiency were obtained for the membrane area of 111 and 777 cm2, respectively. Under changing Re in the pH range of 1 to 4, Re and LCD were proportional under the same pH condition, and pH and LCD tended to be inversely proportional under the same Re condition. Cadmium removal rate was the best at the pH range 3 - 4. It has been found that ED with channeled stacks can be successfully applied to treat wastewater containing high concentrations of cadmium.

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

PIV measurement of step cavity with driven flow (구동류를 갖는 계단 캐비티의 PIV계측)

  • 조대환;김진구;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 1998
  • An experimental study was carried out in a three-dimensional cubic cavity driven by 2-dimensional plane Poiseuille flow for three kinds of Reynolds number, $10^4$, 3 $\times$ $10^4$ and 5 $\times$ $10^4$ based on the cavity width and cavity inlet mean flow velcoity. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system. Laser based illumination and two-frame grey-level cross correlation algorithm are adopted. Severe unsteady flow fluctuation within the cavity are remarkable at above Re = 3 $\times$ $10^4$ Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving Poiseuille flow is collided with the clock-wise rotating main primary vortex at upper center area. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the separate two areas.

  • PDF

Comparison of Two Viscous Models for Vortex Methods (와법에 사용되는 2가지 점성모델의 비교)

  • Jung, Jae-Hoon;Yoon, Jin-Sup;Jin, Dong-Sik;Ahn, Cheol-O;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.518-523
    • /
    • 2001
  • Vortex methods were originally conceived as a tool to model the evolution of unsteady, incompressible, high Reynolds number flows of engineering interest. Recently various methods have been proposed for simulating the diffusion in vortex methods for two-dimensional incompressible flows. We test the diffusion schemes of vortex methods. In this paper we directly compare the particle strength exchange scheme with the vorticity redistribution scheme in tenus of their accuracy and computational efficiency. Comparisons between both viscous models described are presented for short-time runs of impulsively started flows past a circular cylinder for Reynolds number of 60. The particle strength exchange scheme has been shown more accurate and efficient than the vorticity redistribution scheme.

  • PDF

A Numerical Study on the Mixed Convection in Open-Ended Inclined Channels (양 끝이 개방된 경사진 채널 내에서의 혼합대류에 관한 수치적 연구)

  • Piao Ri-Long;Bae Dae-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.78-85
    • /
    • 2005
  • A numerical calculation is performed to study the effects of buoyancy force on the heat transfer characteristics of laminar forced convection flow in inclined parallel plates with the upper part cooled and the lower Part heated uniformly. Numerical results are presented for the Reynolds number ranges from $4.0\times10^{-3}$ to $1.13\times10^{-1}$. the angle of inclination, $\theta$. from 0 to 90 degree and Pr of the high viscosity fluid is 909. It is found that the flow pattern of mixed convection in inclined parallel Plates can be classified into four patterns which affected by Reynolds number and the angle of inclination.

Viscous Flow Analysis for the Rudder Section Using FLUENT Code (FLUENT 코드를 이용한 타 단면의 점성 유동 해석)

  • 부경태;한재문;송인행;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • Lately, the cavitation and erosion phenomena in the rudder have been increased for high-speed container ships. However, cavitation is not prone to occur in model experiments because of low Reynolds number. In order to predict the cavitation phenomena, the - analysis of the viscous flow in the rudder gap is positively necessary In this study, numerical calculation was applied to the two-dimensional flow around the rudder gap using FLUENT code. The velocity and pressure field were numerically acquired and cavitation phenomena could be predicted. And the case that the round bar was installed in the rudder gap was analyzed. For reducing the acceleration force when fluid flow through the gap, modified rudder shape is proposed, It is shown that modified rudder shape restrain the pressure drop at the entrance of the gap highly both in the computational results and in the model experiment, and reduce the cavitation bubbles.

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

Large-Eddy Simulation of a Turbulent Obstacle Flow at a High Reynolds Number (높은 레이놀즈수에서의 난류 장애물유동의 Large-Eddy-Simulation)

  • 양경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1866-1872
    • /
    • 1994
  • Turbulent flow in a channel with a square rib periodically mounted on one wall is studied by large-eddy simulation(LES). An efficient 3D Navier-Stokes solver has been written for this geometry using a fractional step method and a multi-grid technique. The Reynolds number considered is 82, 000 based on the mean velocity above the obstacle height. Near-wall turbulence is approximated by a wall-layer model based on the turbulence intensity at the grid point nearest a solid wall. The results show a good qualitative agreement with experiments currently available for a single rib, indicating that LES can be a useful tool in simulating complex turbulent flows.

Flow Visualization and Numerical Calculation in a Channel Perturbed by Curvilinear Blockages (장애물을 갖는 덕트내의 유동가시화 및 수치해석에 관한 해석)

  • Moon, C.;Park, J.C.;Kim, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.218-226
    • /
    • 1994
  • Laminar flow and heat transfer in a channel with blockages are obtained numerically in a Reynolds-number range of $100{\leq}Re{\leq}400$. A boundary-fitted curvilinear coordinate system is generated for irregular boundary of the physical region, and solutions of Navier-Stokes equation and energy equation are obtained by finite analytic method in the transformed computational domain. The flow separates in downstream of the blockage and the length of separated-flow region increases with Reynolds number. The heat flux is high on the top of the blockages and increase in the heat transfer occurs where the fluid reattaches the wall. Comparison between computed streamlines and experimental flow-visualization is also presented and discussed.

  • PDF

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF