• Title/Summary/Keyword: High Reynolds $k-{\epsilon}$ turbulent model

Search Result 10, Processing Time 0.022 seconds

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Analysis of Flow Characteristics on the Axial Flow Fan with Centrifugal Blade (원심형 날개를 부착한 축류홴의 유동특성 해석)

  • Choi Jung-Geun;Lee Seok-Jong;Lee Myoeng-Ho;Sung Jae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.589-596
    • /
    • 2006
  • This study aims to propose a new model axial flow fan which attachs centrifugal blades, and to investigate the effect of centrifugal blades on the performance improvement of new model axial flow fan. A numerical simulation has been conducted using STAR-CD commercial code to solve the three dimensional incompressible Navier-Stokes equation for high Reynolds number $k-{\epsilon}$ turbulent model. Numerical simulation is carried out to investigate the detail phenomenon in the flow field and performance characteristics of new model and normal model fan. Calculation results are compared with normal model's results to investigate which centrifugal blades effect on velocity profile and pressure distribution at various flow field positions. and calculation results show that new model fan can improve the performance of total pressure.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization (주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구)

  • ;Park, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

Numerical simulation of tip clearance flows through linear turbine cascades (선형터빈 익렬의 익단간극유동에 대한 수치해석적 연구)

  • Lee, Hun-Gu;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.813-821
    • /
    • 1997
  • Three-dimensional turbulent incompressible flow through the tip clearance of a linear turbine rotor cascade with high turning angle has been analyzed numerically. As a preliminary study to predict the tip clearance loss realistically, a generalized k-.epsilon. model derived by RNG (renormalized group) method is used for the modeling of Reynolds stresses to account for the strain rate of turbulent flow. The effects of the tip clearance flow on the passage vortex, the total pressure loss are considered qualitatively. The existences of vena contract and tip clearance vortex have been confirmed and it has been shown that as the size of the tip clearance increases, the accumulated flow through the tip clearance and the total pressure loss downstream of the cascade increase.

Numerical simulation of turbulent flows through linear turbine cascades with high turning angles (전향각이 큰 선형터빈 익렬을 통하는 난류유동의 수치해석)

  • Lee, Hun-Gu;Yu, Jeong-Yeol;Yun, Jun-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3917-3925
    • /
    • 1996
  • A numerical analysis on three dimensional turbulent incompressible flows through linear cascades of turbine rotor blades with high turning angles has been performed by using a generalized k-.epsilon. model which is a high Reynolds number form and derived by RNG(renormalized group) method to account for the variation of the rate of strain. A second order upwind scheme is used to suppress numerical diffusion in approximating the convective terms. Body-fitted coordinates are adopted to represent the complex blade geometry accurately. For the case without tip clearance, velocity vectors and static pressure contours are shown to be in good agreement with previous experimental results. For the case with tip clearance, the effects of the passage vortex and tip clearance flow on the total pressure loss as well as their interactions are discussed.

Numerical analysis of turbulent flow around a small propeller fan operating at the inlet of open chamber (개방된 챔버 입구에서 작동하는 소형 프로펠러 팬 주위의 난류유동해석)

  • O, Geon-Je;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1586-1594
    • /
    • 1997
  • Performance characteristics of a small propeller fan are numerically investigated solving the continuity and Reynolds-averaged Navier-Stokes equations. The Reynolds stresses for turbulent transport are modelled using a k-.epsilon. turbulence model. The present numerical procedure is constructed using the Finite Volume Method with the SIMPLE algorithms. The performance parameters obtained from the calculations are compared with the measured values for the various flow rates. A performance test of the fan shows different characteristics between a radial type at small flow rates and an axial type at large flow rates. Comparisons between the predictions and the measurements show that the predicted results are in good agreement with the measured values and reasonably reproduce the sharp variations of the power and head coefficient around a flow coefficient .PHI.=0.3. These comparisons indicate that the present numerical method is capable of resolving the performance characteristics with reasonable accuracy. At low flow rates, it is found that the flow enters the fan in an axial direction and is discharged radially outward at the tip which happens in the centrifugal fan. The centrifugal effect makes a significant difference in the characteristics of a fan at the low and high values of flow coefficient.

A Numerical Study on the Effect of PCB Structure Variation on the Electronic Equipment Cooling (PCB 구조변화가 전자장비 냉각에 미치는 영향에 관한 수치적 연구)

  • ;;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3329-3343
    • /
    • 1995
  • The interaction of mixed convection and surface radiation in a printed circuit board(PCB) is investigated numerically. The electronic equipment is modeled by a two-dimensional channel with three hot blocks. In order to calculate the turbulent flow characteristics, the low Reynolds number k-.epsilon. model which is proposed by Launder and Sharma is applied. The S-4 approximation is used to solve the radiative transfer equation. The effects of the Reynolds number and geometric configuration variation of PCB on the flow and heat transfer characteristics are analyzed. As the results of this study, it is found that the thermal boundary layer occured at adiabatic wall in case with thermal radiation included, and the effect of radiation is also found to be insignificant for high Reynolds numbers. It is found, as well, that the heat transfer increases as the Reynolds number and block space increase and the channel height decreases and the heat transfer of vertical channel is greater than that of horizontal channel.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Finite Differencing Schemes- (Ahmed body 주위의 3차원 난류유동 해석-유한차분도식의 평가-)

  • Myeong, Hyeon-Guk;Park, Hui-Gyeong;Jin, Eun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3589-3597
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations with the equations of the k-.epsilon. turbulence model are solved numerically in a general curvilinear system for a three-dimensional turbulent flow around an Ahmed body. The simulation is especially aimed at the evaluation of three finite differencing schemes for the convection term, which include the upwind differencing scheme(UDS), the second order upwind differencing scheme(SOU scheme) and the QUICK scheme. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted finite differencing schemes. It is clearly demonstrated that the large difference between computation and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from both front part and vertical rear end base. The results also show that the simulation with the QUICK or SOU scheme predicts fairly well the flow field and gives more accurate drag coefficient than other finite differencing scheme.

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.