• 제목/요약/키워드: High Resolution Video and image

검색결과 124건 처리시간 0.032초

SUPER RESOLUTION RECONSTRUCTION FROM IMAGE SEQUENCE

  • Park Jae-Min;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.197-200
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석 (Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV))

  • 신한섭;김해동
    • 우주기술과 응용
    • /
    • 제3권3호
    • /
    • pp.257-279
    • /
    • 2023
  • 한국항공우주연구원에서는 심우주 탐사를 위한 핵심 기술 개발을 위해 6U급 초소형 위성인 HiREV(high resolution video and image)를 개발하였다. 6U HiREV 초소형 위성의 임무는 지구 관측을 위한 고해상도 영상 및 동영상 촬영이며, 임무 수행 시 고온의 카메라 모듈로 인해 렌즈와 모듈 간의 열 지향 오차가 발생할 수 있다. 열 지향 오차는 해상도에 큰 영향을 미치므로, 이를 해결하기 위해 열 설계가 필요하다. 또한 HiREV 광학 카메라는 지상에서 쓰이는 상용제품(COTS, Commercial Off The Shelf)을 이용하여 개발한 것이므로 상온에서 가장 좋은 성능을 가지며, 고온/저온 환경인 우주에서 활용되기 위해 별도의 열 설계가 적용되어야 한다. 본 논문에서는 임무 카메라 탑재체를 위해 3가지의 수동 열 설계가 수행되었으며, 궤도열 해석을 통하여 열 설계가 효과적임을 확인하였다.

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • 제13권4호
    • /
    • pp.345-354
    • /
    • 2005
  • 초해상도 영상복원은 동일 지역을 촬영한 여러 장의 저해상도 영상을 이용하여 고해상도의 영상으로 재구성하는 영상처리 알고리즘 기법이다. 이 기법은 위성영상, 비디오 감시, 영상 강조 및 복원, 영상 모자이킹, 의료 영상과 같이 여러 장의 프레임 영상을 획득할 수 있는 분야에서 유용하게 사용될 수 있다. 본 연구에서는 지상을 촬영한 비디오 영상 열에 공간영역 초해상도 기법을 적용하였다. 실험에 사용된 영상은 높은 중복도로 촬영된 연속적인 비디오 영상에서 부표본화되었으며, 저해상도 영상과 고해상도 영상간의 관측 모델을 구성하고 초해상도 영상복원 기법중의 하나인 MAP 알고리즘을 적용하였다. MAP 기법을 이용하여 여러 장의 저해상도 영상에서 고해상도 영상으로 복원하였으며, 그 결과를 기존의 영상보간 방법들과 비교하였다.

  • PDF

저해상도 동영상에서의 자동화된 입력영상 선별을 이용한 고해상도 영상 복원 방법 (A High-Resolution Image Reconstruction Method Utilizing Automatic Input Image Selection from Low-Resolution Video)

  • 김성득
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.12-18
    • /
    • 2006
  • 이 논문은 저해상도 동영상에서 자동화된 방식으로 한 장의 좋은 화질의 고해상도 영상을 얻는 방안을 제시한다. 여러 장의 저해상도 영상을 이용하여 고해상도 영상을 얻는 방법이 한 장의 저해상도 영상만을 이용하는 전통적인 보간 방법에 비해 좋은 결과를 보이기 위해서는 입력 영상들이 공통된 고해상도 격자에 잘 정합되어야 하므로, 정합오차를 충분히 고려하여 입력영상들을 주의 깊게 선택한다. 본 논문에서는 움직임 보상된 저해상도 영상들로부터 얻어진 통계적 특성을 활용하여 입력 영상 후보들의 입력 영상으로서의 적합성을 평가한다. 고해상도 영상획득모델로부터 움직임 보상오차의 최대값을 추정한다. 입력 영상 후보의 움직임 보상오차가 추정된 움직임 보상오차의 최대값보다 크면 입력 영상후보는 선정에서 제외된다. 선정된 적절한 유효 입력 영상 후보의 수와 움직임 보상오차의 통계치를 고려하여 최종 입력 영상들을 선별한다. 입력 영상 선별부에서 최종적으로 선별된 입력 영상들은 뒤따르는 고해상도 영상복원부로 입력된다. 제안된 방식은 사용자의 간섭없이 저해상도 동영상에서 효과적으로 입력 영상들을 선별하여 좋은 화질의 고해상도 영상을 얻는 응용에 사용될 것으로 기대된다.

GAN 적대적 생성 신경망과 이미지 생성 및 변환 기술 동향 (Research Trends of Generative Adversarial Networks and Image Generation and Translation)

  • 조영주;배강민;박종열
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.91-102
    • /
    • 2020
  • Recently, generative adversarial networks (GANs) is a field of research that has rapidly emerged wherein many studies conducted shows overwhelming results. Initially, this was at the level of imitating the training dataset. However, the GAN is currently useful in many fields, such as transformation of data categories, restoration of erased parts of images, copying facial expressions of humans, and creation of artworks depicting a dead painter's style. Although many outstanding research achievements have been attracting attention recently, GANs have encountered many challenges. First, they require a large memory facility for research. Second, there are still technical limitations in processing high-resolution images over 4K. Third, many GAN learning methods have a problem of instability in the training stage. However, recent research results show images that are difficult to distinguish whether they are real or fake, even with the naked eye, and the resolution of 4K and above is being developed. With the increase in image quality and resolution, many applications in the field of design and image and video editing are now available, including those that draw a photorealistic image as a simple sketch or easily modify unnecessary parts of an image or a video. In this paper, we discuss how GANs started, including the base architecture and latest technologies of GANs used in high-resolution, high-quality image creation, image and video editing, style translation, content transfer, and technology.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

듀얼 스캐닝을 이용한 고해상 LED 전광판 영상제어장치설계 (Using a high-resolution LED display Dual Scanning Image Control System Design)

  • 하영재;김인재;김선형
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1415-1422
    • /
    • 2011
  • 본 논문에서는 풀 칼라 전광판에서 고효율의 해상도 표출을 위해서 듀얼 스캐닝 제어방식을 제안하고, 이를 이용해서 LED전광판의 고정된 픽셀을 영상신호에 따라 픽셀 도트 형태를 변화하게 하였다. 그리고 DICT(Dynamic Image Correction Technology) 메인 컨트롤러를 이용해서 동영상 정보를 히스토그램 균등화에 의거 영상 계조도의 값을 균일하게 분포하도록 하고, 동적 영역을 변환하여 화질을 개선하며, 입력 영상을 듀얼 오토 스캔 스위칭 컨트롤러로 전광판 내 LED Module의 픽셀을 물리적으로 제어함으로서 기존 전광판 LED 픽셀 도트의 표출 대비 4배의 고해상도 표출이 가능하도록 하는 기술을 제안하고 이를 시험제작을 통해서 그 성능을 입증하였다.

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.