• Title/Summary/Keyword: High Resolution Radar

Search Result 326, Processing Time 0.026 seconds

Mesoscale Characteristics of Frontal System on Redar Data (레이더 자료에 나타난 전선성 강수계의 중규모적 특성 분석)

  • Jeong, Yeong-Seon;Im, Eun-Ha;Nam, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2000
  • In Korea, heavy rainfall is mainly induced by the Changma front or frontal system passed over Korea periodically. Both its unknown mesoscale characteristics and the lack of direct measurements make it difficult to predict precipitation reasonably. To understand its 3-dimensional structure, initiation and development mechanism of precipitation in that system will be very helpful to forecast it more accurately. A meteorological radar is specially useful because it produces direct measurement with high resolution in time and space. In this study, representative frontal system is selected and analyzed specially focused on its vertical structure using radar data. Results shows that there are convective cells with horizontal scale of 10 - 20 km in precipitation system. Melting layer located between 3 and 5 km height, maximum fall speeds of rain drops were seen just below bright band.

  • PDF

The Application of InSAR Signature Time Series for Landcover Classification (InSAR Signature 시계열 분석을 통한 토지피복분류)

  • Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

A Compacted Ultra-fast Ka-band Frequency Synthesizer for Millimeter Wave Seeker (소형화된 Ka 대역 밀리미터파 탐색기용 초고속 주파수합성기)

  • Lim, Ju-Hyun;Yang, Seong-Sik;Song, Sung-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, we implemented a Ka-band frequency synthesizer for millimeter wave seeker. we designed for high frequency resolution and frequency hopping response time in the digital synthesis method which uses DDS(Direct Digital Synthesizer). but frequency bandwidth was limited low frequency because DDS output frequency was limited 1/2 by system clock. thus, frequency synthesizer was converted to Ka-band using the frequency multiplier ${\times}4$ and local oscillator. proposed frequency synthesizer was bandwidth 500MHz, frequency switching time was $0.7{\mu}s$, spurious level was suppressed below -52dBc. phase noise was -99dBc/Hz at offset 100kHz and flatness was ${\pm}1dB$.

The Study of DoA Estimation in Frequency Domain in Automotive Radar System (차량용 레이더 시스템에서 주파수 영역의 도래각 추정 기법에 관한 연구)

  • Choi, Jung-hwan;Choi, Ji-won;Kim, Seong-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Convenience and safety are the key words for the automotive driving and various sensor technologies have been studied for enhanced perception of driving environments. In frequency modulated continuous wave (FMCW) radar systems, single antenna is enough for range and velocity detection of multiple targets. Multiple array antenna is needed for estimating direction of arrival(DoA). Using DoA estimation algorithm in time domain as in the conventional systems, it is difficult to distinguish vehicles lie in the same angle. In order to facilitate the enhanced angle estimation, DoA estimation algorithm is applied in frequency domain. In this paper, the method for applying multiple signal classification(MUSIC) algorithm in frequency domain is suggested and the performance is analyzed.

Joint Range and Angle Estimation of FMCW MIMO Radar (FMCW MIMO 레이다를 이용한 거리-각도 동시 추정 기법)

  • Kim, Junghoon;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.169-172
    • /
    • 2019
  • Frequency-modulated continuous wave(FMCW) radars with array antennas are widely used because of their light weight and relatively high resolution. A usual approach for the joint range and angle estimation of a target using an array FMCW radar is to create a range-angle matrix with the deramped received signal, and subsequently apply two-dimensional(2D) frequency estimation methods such as 2D fast Fourier transform on the range-angle matrix. However, such frequency estimation approaches cause bias errors since the frequencies in the range-angle matrix are not independent. Therefore, we propose a new maximum likelihood-based algorithm for joint range and angle estimation of targets using array FMCW radar, and demonstrate that the proposed algorithm achieves the Cram?r-Rao bounds, both for range as well as angle estimation.

Adaptive CFAR implementation of UWB radar for collision avoidance in swarm drones of time-varying velocities (군집 비행 드론의 충돌 방지를 위한 UWB 레이다의 속도 감응형 CFAR 최적화 연구)

  • Lee, Sae-Mi;Moon, Min-Jeong;Chun, Hyung-Il;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.

Design of MUSIC-based DoA Estimator for Bluetooth Applications (Bluetooth 응용을 위한 MUSIC 알고리즘 기반 DoA 추정기의 설계)

  • Kim, Jongmin;Oh, Dongjae;Park, Sanghoon;Lee, Seunghyeok;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.339-346
    • /
    • 2020
  • In this paper, we propose an angle estimator that is designed to be applied to Bluetooth low-power application technology based on multiple signal classification (MUSIC) algorithm, and present the result of implementation in FPGA. The MUSIC algorithm is designed for H/W high-speed design because it requires a lot of calculations due to high accuracy, and the snapshot variable is designed to cope with various resolution requirements of indoor systems. As a result of the implementation with Xilinx zynq-7000, it was confirmed that 9,081 LUTs were implemented, and it was designed to operate at =the operating frequency of 100MHz.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.