• Title/Summary/Keyword: High Range Resolution Radar

Search Result 101, Processing Time 0.026 seconds

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Sweep Nonlinearity Estimation for High Range Resolution Millimeter-Wave Seeker Using Least Squares Method (최소 자승법을 이용한 고해상도 밀리미터파 탐색기의 비선형 위상 오차의 추정)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.56-67
    • /
    • 2012
  • In this thesis, to compensate the sweep nonlinearity occurring in the high resolution radar system using FMICW or FMCW, the method of the estimation of the nonlinearity is proposed. The nonlinear phase component caused by the nonlinear characteristic of the radar system is modelled as a linear combination of the sinusoidal functions consisting of various magnitudes and phases(systematic nonlinear phase error) and a random component(stochastic nonlinear phase error). From two IF signals that are measured respectively independently for two reference point targets lying in different distances which are known, a sparse linear equation is made and solved by least squares method to estimate the nonlinear phase component. The estimated component can be used for predistortion method to compensate the sweep nonlinearity.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

UWB Automobile Short Range Radar Receivers Performance In a Log-Normal Clutter Background (Log-Normal Clutter 환경에서 차량용 UWB 단거리 레이더 수신기의 성능분석)

  • Kumaravelu, Nandeeshkumar;Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.59-64
    • /
    • 2011
  • Ultra wideband radars attract considerable attention as a short range automotive radar because of its high range resolution. Radar signal reflected from a target often contains unwanted echoes called as clutter, so the detection of target is difficult due to clutter echoes. Therefore, it is important to investigate the radar detector for better detecting from the reflected signals. In this paper, the optimal detector is obtained for various mean and variance value in log-normal clutter environment. The types of non-coherent detectors used are square law detector, linear detector, and logarithmic detector. The performances of detectors are compared in log normal clutter environment and the suitable detector is determined for automotive short range radar application.

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

A Novel 3-D Imaging Configuration Exploiting Synthetic Aperture Ladar

  • Guo, Liang;Huang, Yinli;Li, Xiaozhen;Zeng, Xiaodong;Tang, Yu;Xing, Mengdao
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.598-603
    • /
    • 2017
  • Traditional three-dimensional (3-D) laser imaging systems are based on real aperture imaging technology, whose resolution decreases as the range increases. In this paper, we develop a novel 3-D imaging technique based on the synthetic aperture technology in which the imaging resolution is significantly improved and does not degrade with the increase of the range. We consider an imaging laser radar (ladar) system using the floodlight transmitting mode and multi-beam receiving mode. High 3-D imaging resolutions are achieved by matched filtering the linear frequency modulated (LFM) signals respectively in range, synthetic aperture along-track, and the real aperture across-track. In this paper, a novel 3-D imaging signal model is given first. Because of the motion during the transmission of a sweep, the Doppler shift induced by the continuous motion is taken into account. And then, a proper algorithm for the 3-D imaging geometry is given. Finally, simulation results validate the effectiveness of the proposed technique.

A study on the Development of Frequency Modulated Continuous Wave Radar for Distance Measurement (거리 측정용 주파수 변조 연속파 레이더 개발에 관한 연구)

  • Park, Dong-Kook;Han, Tae-Kyoung;Lee, Hyun-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1005-1010
    • /
    • 2005
  • In this paper, it is presented a frequency modulated continuous wave radar (FMCW) for distance measurement. The frequency range is $10{\sim}11$ GHz and the sweep time of the signal is 100 ms. The test target is 0.8 m2 of metal plate. The experiment is performed in open ground and the pyramidal horn antenna of about 22 dBi gain is used. The beat frequency according to the target moving to 40 m is measured. There is a good agreement between measured and calculated results. But the resolution of the FMCW radar is not good such as about 10 cm. It is result from the nonlinear signal of voltage controlled oscillator (VCO). To improve the nonlinear characteristic of VCO, a high pass filter and phase locked loop (PLL) frequency synthesizer are included in the radar system.

  • PDF

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

A Perspective on Radar Remote Sensing of Soil Moisture

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.761-771
    • /
    • 2011
  • The sensitivity of microwave scattering to the dielectric properties and the geometric structure of soil surfaces makes radar remote sensing a challenge for a wide range of environmental issues directly related to the condition of natural surfaces. Especially, the potential for retrieving soil moisture with a high spatial and/or temporal resolution represents a significant contribution to hydrological and ecological modeling. This paper aims to review the current state of the art in SAR technology and methodological issues towards the discovery of a new potential accurate monitoring of soil moisture changes. In this paper, important parameters or constraints significantly affect the sensitivity of the measurements to soil moisture, such as roughness statistics, spatial resolution, and local topography, are discussed to improve the applicability of SAR remote sensing techniques. This study particularly intends to discuss important notes for developing smart and reliable methods capable of retrieving geophysical information.