• 제목/요약/키워드: High Range Resolution Radar

Search Result 101, Processing Time 0.028 seconds

Position Estimation of a Missile Using Three High-Resolution Range Profiles (3개의 고 분해능 거리 프로파일을 이용한 유도탄의 위치 추정)

  • Yang, Jae-Won;Ryu, Chung-Ho;Lee, Dong-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.532-539
    • /
    • 2018
  • A position estimation technique is presented for a missile using high-resolution range profiles obtained by three wideband radars. Radar measures a target range using a reflected signal from the surface of a missile. However, it is difficult to obtain the range between the radar and the origin of the missile. For this reason, the interior angle between the moving missile and tracking radar is calculated, and a compensated range between surface of the missile and its origin is added to the tracking range of the radar. Therefore, position estimation of a missile can be achieved by using three total ranges from each radar to the origin of the missile. To verify the position estimation of the missile, electromagnetic numerical analysis software was used to prove the compensated range according to the flight position. Moreover, a wideband radar operating at 500-MHz bandwidth was applied, and its range profile was used for the position estimation of a missile.

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.

Design and Fabrication of a Multiple Scattering Points Discriminator for a Simulated Target Measurement using a High Range Resolution RADAR (고해상도 레이다를 이용한 모의 대상물 측정용 다중산란점 분별기의 설계 및 제작)

  • Jeong, Hae-Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.323-330
    • /
    • 2018
  • In this paper, design and fabrication of a MSP(Multiple Scattering Points) discriminator for a simulated target measurement using a HRR(High Range Resolution) RADAR are described. The MSP discriminator is designed to provide a reference signal at the installed point on the simulated target in an outdoor test. The MSP discriminator is designed to have a remote control function that can turn the MSP discriminator on and off when the target moves to a remote location. While the MSP discriminator is off, the MSP discriminator is designed to be small enough not to spoil the target's unique RCS. The MSP discriminator consists of RF components in the Ku-band. In order to prevent spreading of the signal, a cable were added to the MSP discriminator to have an appropriate feedback loop delay considering the resolution of the RADAR. The fabricated MSP discriminator provided a reference scattering point as an RCS of approximately 1 dBsm. As a result, by using the MSP discriminator, the physical scattering points of the target were clearly identified in the measured signals with the RADAR.

A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm (Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구)

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.

A Design and Fabrication of Multiple Scattering Points Generator for High Range Resolution Radar (고해상도 레이더용 다중산란점 발생장치의 설계 및 제작)

  • Lee, Ho-Joon;Kim, Youn-Jin;Yoon, Seung-Gu;Jeong, Hae-Chang;Kong, Deok-Kyu;Yi, Jae-Woong;Byun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.590-597
    • /
    • 2016
  • We designed the multiple scattering points generation system to simulate an actual situation of target signal for high range resolution radar system. This provides replicating the target signals and controlling the status of target signals for radar system. This is composed transmit antenna and multi target generator. Transmit antenna is waveguide array antenna and multi target generator has signal distribution module and control & power module. Multi target generator is able to provide the high isolation and variable output power. Moreover, in order to monitor all output signals of the multi target generator, the flows of signals are programed in control & power module. The performance is demonstrated using experimented results of high range resolution radar.

Wideband Chirp Waveform Simulation and Performance Analysis for High Range Resolution Radar Imaging (고해상도 영상 레이다의 광대역 첩 신호 파형 발생 시뮬레이션과 성능 분석)

  • Kwag, Young Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.97-103
    • /
    • 2002
  • A recent technology trends in synthetic aperture radar(SAR) requires the ultra high resolution performance in detecting and precisely identifying the targets. In this paper, as a technique for enhancing the radar range resolution, the wide band chirp connection algorithm is presented by stitching the several chirp modules with unit bandwidth based on the linear frequency modulated chirp signal waveform. The principles of the digital chirp signal generation and its architecture for implementation is described with the wide band chirp signal generator, modulator, and demodulator. The performance analysis for the presented algorithm is given with the simulation results.

  • PDF

Wideband Chirp Waveform Design for High Range Resolution Radar Imaging (고해상도 영상 레이다의 광대역 첩 신호 파형 설계)

  • 곽영길;조호신
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A recent technology trends in synthetic aperture radar(SAR) requires the ultra high resolution performance in detecting and precisely identifying the targets. In this paper, as a technique for enhancing the radar range resolution, the wideband chirp connection algorithm is presented by stitching the several chirp modules with unit bandwidth based on the linear frequency modulated chirp signal waveform. The principles of the digital chirp signal generation and its architecture for implementation is briefly described, and the wideband chirp signal generator, modulator, and demodulator are designed. The performance analysis for the presented algorithm is given with the simulation results.

Analysis of High Resolution Range Estimation for Moving Target Using Stepped Frequency Radar with Coherent Pulse Train (코히어런트 펄스열을 갖는 계단 주파수 레이더를 이용한 이동표적의 고해상도 거리 추정 분석)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.599-604
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method that realizes high resolution range estimation by increasing the frequency of transmission pulses at regular intervals to generate a wide synthetic bandwidth. However, in the case of a moving target, accurate range estimation becomes difficult due to the range-Doppler coupling. In this paper, the process of high resolution range estimation by compensation of the range-Doppler coupling with estimated velocity of the moving target using the SFR waveform with Coherent Pulse Train(CPT) is analyzed and it was verified through simulation.

Coherent Pulse Train Based Velocity Estimation and Compensation for High Resolution Range Profile of Moving Target in Stepped Frequency Radar (계단 주파수 레이더에서 이동표적의 고해상도 거리 추정을 위한 코히어런트 펄스열 기반의 속도 추정 및 보상)

  • Sim, Jae-Hun;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.309-315
    • /
    • 2018
  • A Stepped Frequency Radar(SFR) is a method of achieving high range resolution by gradually increasing the frequency of a transmitted pulse to create a wide synthetic bandwidth. However, in the case of moving target, accurate range estimation can not be performed due to the range-Doppler coupling phenomenon, so it is necessary to compensate through accurate velocity estimation. In this paper, we propose a stepped frequency radar waveform with a Coherent Pulse Train(CPT), velocity estimation results according to parameters using this method and VMD(Velocity Measurement Data) were compared and analyzed by numerical simulations.

High Resolution Forward-Looking Collision Avoidance Automotive Radar Using Stepped-Frequency Pulsed-Doppler(SFPD) Technique (계단 주파수 변조된 펄스 도플러 기법을 이용한 고해상도 전방 충돌 회피용 차량 레이다 성능 분석)

  • Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.784-790
    • /
    • 2009
  • A forward-looking automotive radar typically utilizes the frequency modulated continuous wave(FMCW) or pulsed-Doppler waveform for the Information acquisition of the target range and velocity. In order to obtain the high resolution target information, however, a narrow pulse width and wide bandwidth are inherently required, thus resulting in high peak power and high speed digital converter processing. In this paper, a stepped-frequency pulsed-Doppler(SFPD) waveform algorithm is proposed for high resolution forward looking automotive radar application. The performance of the proposed SFPD waveform technique is analyzed and compared with the conventional FMCW and PD method. Since this technique can be used for the high resolution target imaging with arbitrary range and Doppler resolution, it is expected to be useful In automotive radar target classification for the precision collision avoidance applications in the future.