• Title/Summary/Keyword: High Pressure Vessel

Search Result 357, Processing Time 0.025 seconds

Effect of Heat Input on the Mechanical Properties of SA508 class 3 Steel Weldments with Submerged Arc Welding (SA508 class 3 서브머지드 아크용접부의 기계적 성질에 미치는 입열량의 영향)

  • Seo Yun-seok;Koh Jin-Hyun;Kim Nam-Hoon;Oh Se-Yong;Choo Kee-Nam
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • The present study is to investigate the effect of heat input on the microstructure, tensile properties and toughness of single-pass submerged arc bead-in-groove welds produced on SA508 class 3 steels. The heat input was varied in the range of 1.6, 3.2 and 5.0 kJ/mm. The toughness of weld metals was evaluated by using subsize Charpy V-notch specimens in the temperature range of -19$0^{\circ}C$ to 2$0^{\circ}C$. The weld microstructure and fractography were observed by optical and scanning electron microscopies, respectively. With increasing heat inputs, tensile strength and hardness of weld metals were decreased while elongation was increased. The poor notch toughness at 1.6 kJ/mm was attributed to the formation of ferrite with aligned second phase and banitic microstructure with high yield strength while that at 5.0 kJ/mm was due to the presence of grain boundary and polygonal ferrites. The microstructure of the intermediate energy input welds consisted of a high proportion of acicular ferrite with limited polygonal ferrites, which provide improved notch toughness.

Study on the Tensile Strength Characteristics of CFRP under the High Temperature Condition (고온 환경하에서의 CFRP의 인장강도특성에 관한 연구)

  • Park Jae-Beom;Hwang Tae-Kyung;Kim Hyung-Geun;Doh Young-Dae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.86-89
    • /
    • 2006
  • In this research, the decrease of the tensile strength in CFRP was investigated by experimental and analytical methods. We focused on the role of the interface between the reinforcing fiber and the epoxy resin matrix. The tensile and the interface strengths in CFRF were evaluated using the strand and the short beam specimens. Curtin's model which correlate the mechanical strength of the interface to the tensile strength was introduced for analytical study. The experimental and the analytical results showed good coincidence and we found that the interface strength is the key factor which governs the CFRP's tensile strength.

  • PDF

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.

Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray (증발디젤분무의 공간적 구조해석에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

Fatigue Strength Analysis of Marine Propeller Blade to Change in Skew Angle (박용 프로펠라의 스큐각 변화에 따른 피로강도해석)

  • Bal-Young Kim;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.80-87
    • /
    • 1998
  • This paper deals with the evaluation of structural safety to fatigue strength of marine propeller blades having high skew angle and operating in irregular wake field. The determination of the optimum skew angle of a propeller blade is one of the important task at the initial design stage especially in the case of high speed vessel such as container ships. A computer program system has been developed to evaluate the structural safety to fatigue strength and has been applied to several propeller blades with varying skew angle within a wide range. In the parametric study the pressure acting on the blade surface is calculated using the non-lineal lifting surface theory and the structural analysis is performed using MSC/NASTRAN. The relationship between skew angle and structural safety to fatigue strength is investigated and this paper ends with describing the optimum skew angle of a propeller blade.

  • PDF

The Ablation Effect of Fabric/EPDM Rubber with Manufacturing process (Fabric/EPDM계 고무의 제작 공정에 따른 삭마 특성)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Cho, Won-Man;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.92-95
    • /
    • 2012
  • The dual pulse rocket motor is a pressure vessel containing two pulse grains separated by a pulse separation device such as a fragile bulkhead. One of the important things in this systems is case insulation design using the excellent materials in the 1st stage pulse motor. We investigated manufacturing process of fabric/EPDM chamber insulations in order to protect the 1st stage pulse motor case with high intensity gas flow. Simulation motor connected with extension tube having FRP disc was designed to study ablation characteristics of insulation.

  • PDF

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Recent Research Trends in Carbon Fiber Tow Prepreg for Advanced Composites (탄소섬유 토우프리프레그 최신 연구동향)

  • Park, Yongmin;Hwang, Tae Kyung;Chung, Sangki;Park, Nohyun;Jang, Jun Yeol;Nah, Changwoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-101
    • /
    • 2017
  • Tow Prepreg is the intermediate material for filament winding process that has been "pre-impregnated fiber tow" with resin system. As "dry filament winding" process emerges as a reliable alternative to conventional filament winding (called "wet filament winding") process, interest in tow prepreg as a material for dry filament winding is rising as well. In this article, we have reviewed the recent research trends in carbon fiber tow prepreg for high-performance rocket motor cases, fuel tanks for hydrogen vehicles and other high-quality commercial pressure vessels.

Susceptibility of Stress Corrosion Crack Initiation of Type 304 SS in Simulated Primary Water Environment of PWR (원전 1차 계통수 모사환경에서 Type 304 스테인리스강의 응력부식균열개시 민감도)

  • Sung-Hwan Cho;Sung-Woo Kim;Jong-Yeon Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • The core shroud of rector vessel internals (RVI) of OPR1000 and ARP1400 is made of Type 304 stainless steel (SS) by bending and welding process that may induce high deformation and residual stress in manufacturing. This work aims to evaluate the susceptibility of stress corrosion crack (SCC) initiation of bent parts of RVI in high temperature primary water environment. For SCC initiation test, tensile specimens were fabricated from the 90 degree bent plate of Type 304 SS (DT specimen), that is an archived part of a Korean APR1400. After the SCC initiation test, the specimen surface was thoroughly examined by optical and scanning electron microscopy, and compared to the specimen fabricated from the as-received plate of Type 304 SS (AR specimen). The surface observation revealed that SCC initiated on the AR specimen surface in typical intergranular (IG) mode, while SCC on the DT specimen occurred in transgrannular mode as well as IG mode. It was also found that the size and number of SCC on the DT specimen were larger than that on the AR specimen. This was attributable to a strain-hardening during the bending process. To compare the susceptibility of SCC initiation, total crack density (TCD) was calculated from the total crack length divided by the measured area of AR and DT specimens. TCD of DT specimen was 4.6 times higher than AR specimen in average, indicating that higher possibility of degradation of bent parts of RVI for a long-term operation.

Steam Explosion Experiments using ZrO$_2$ (ZrO$_2$를 이용한 증기폭발 실험)

  • Song, Jin-Ho;Kim, Hui-Dong;Hong, Seong-Wan;Park, Ik-Gyu;Sin, Yong-Seung;Min, Byeong-Tae;Kim, Jong-Hwan;Jang, Yeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1887-1897
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named "Test for Real Corium Interaction with water (TROI)" using reactor material to investigate whether the molten reactor material would lead to energetic steam explosion when interacted wish cold water at low pressure. The melt-water interaction experiment is performed in a pressure vessel with the multi-dimensional fuel and water pool geometry. The novel concept of cold crucible technology, where powder of the reactor material in a water-cooled cafe is heated by high frequency induction, is firstly implemented for the generation of molten fuel. In this paper, the lest facility and cold crucible technology are introduced and the results or the first series of tests were discussed. The 5 kg of molten ZrO$_2$jet was poured into the 67cm deep water pool at 30 ∼ 95 $\^{C}$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicate the differences between the two cases.