• Title/Summary/Keyword: High Pressure Vessel

Search Result 359, Processing Time 0.026 seconds

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Fire Hazard of PP and LLDPE dust in Chemical Plant Process (석유화학플랜트에서 발생하는 PP(Poly Propylene) 및 LLDPE(Linear Low Density Poly Ethylene) 분진의 연소 위험성에 관한 연구)

  • 김정환;이창우;현성호;권경옥
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Thermal properties of PP and LLDPE dusts from chemical plant and their risks of coexisting with oxidizer were investigated by a pressure vessel. The thermal decomposition of PP and LLDPE dusts with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of PP and LLDPE dusts. Using the pressure vessel which can estimate ignition and explosion of PP and LLDPE dusts coexisting with oxidizer, a series of bursting of a rupture disc, experiments has been conducted by varying the orifice diameters the weight ratio of the sample coexisting with oxidizers and the species of oxidizer. And fire gases was measured by gas analyser ($ECOM-A^+$). According to the results of the thermal analysis of PP and LLDPE dusts, the decomposition temperature range of PP and LLDPE dusts was 200 to 350 and 300 to $500^{\circ}c$, respectively. The risk of PP and LLDPE dusts coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the weight ratio of the sample to the oxidizer were increased. In addition, the risk of PP and LLDPE dusts coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer. It is found that the risk of fire becomes high when the decomposition temperature of the sample is about same as that of oxidizer. Also, the fire gases was occurred carbon monoxide and carbon dioxide. The amount of carbon monoxide generated was found to be much higher in PP decomposition than in LLDPE due to incomplete combustion of PP which has high content of carbon in chemical compound.

  • PDF

Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at Higt Temperature. (원자로 압력용기용 강의 고온피로특성에 미치는 응력비의 영향)

  • 박경동;정찬기;김정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1108-1114
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516-Grade 70 steel which is used for pressure vessels was experimentally examined under the condition of at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ration of R=0.1 and 0.3. The fatigue crack propagation rate , da/dN, related with the stress intensity factor range, $\vartriangle$N, was influenced by the stress ration within the stable growth of fatigue crack(Region II) with an increase in $\vartriangle$N. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations revels that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack and oxide-induced by high temperature.

  • PDF

Detailed Design for 25bar-class Biogas Compression Supplying System (25BAR급 바이오가스 고압 압축공급시스템 상세설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.173.1-173.1
    • /
    • 2011
  • The high fuel flexibility of gas turbine power system has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and sewage waste water as a fuel for gas turbines has increased. We investigated the performance of high pressure biogas compression system and operating conditions for supplying biogas. The total flow per minute of biogas from food waste water digestion tank is $54Nm^3$. The main type of biogas compression system is the reciprocating system and screw type system. The target of biogas mechanical data is the as belows; inlet pressure 0.045bar, supplying biogas temperature is $30{\sim}60^{\circ}C$, and final pressure is above the 25 bar. Also, inlet conditions of biogas consist of CH4 48.5%~83%, $H_2S$ Max. 500ppm, $NH_3$ Max. 1,500ppm and Siloxane 2.7~4.6ppm. The boosting Blower system raises a pressure from 0.045bar to 1bar before main compressor. The main system lay out of reciprocating consisits of compressor driver, filter, cooling system, blowdown vessel, control system and ESD(Emergency Shut Down) system. And an enclosure package needs to be installed for reducing noise up to 75dB. The system driver is the electronic motor of explosion proof type. Forthe compressor system reliable operation, the cleaning system something like particulate filter needs to be set up in the inlet of compressor and Coalescing Filter in the outlet of compressor. Particulate Filter has to be removed above $10{\mu}m$ size of the particles in biogas. The coalescing filter(Micofine Borosilicate Glass Fibers Filter treated phenol acid) also removes moisture and oil of above $0.3{\mu}m$ to be involved in high pressure biogas up to 90%~98%.

  • PDF

The Characteristics of the Hydrogen Embrittlement for the Cr-Mo Steels in Use of Pressure Vessel (압력용기용 Cr-Mo강의 수소취화 특성)

  • Lee, Hwi-Won;Yang, Hyun-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1107-1113
    • /
    • 2002
  • This study presents the hydrogen emblittlement in the metal, which decreases the ductility and then induces the brittle fracture. The contribution deals with the effect of strain rate and notch geometry on hydrogen emblittlement of 1.25Cr-0.5Mo and 2.25Cr-1Mo steels, which are in use at high pressure vessel. Smooth and notched specimens were examined to obtain the elongation and tensile strength. For charging the hydrogen in the metal, the cathodic electrolytic method was used. In this process, current density is maintained constant. The amount of hydrogen penetrated in the specimen was detected by the hydrogen determenator(LECO RH404) with the various charging time. The distribution of hydrogen concentration penetrated in the specimen was obtained by finite element analysis. The amount of hydrogen is high in smooth specimen and tends to concentrate in the vicinity of surface. The elongation and tensile strength decreased with the passage of charging time in 1.25Cr-0.5Mo and 2.25Cr-1Mo steels. The elongation increased and tensile strength decreased as strain rate increased. As a result of this study, it is supposed that 1.25Cr-0.5Mo steel is more sensitive than 2.25Cr-lMo steel in hydrogen embrittlement. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

A Study on the Transition of Hydrogen-Air and LPG-Air Explosion to Fire (수소와 액화석유 가스의 공기혼합기의 폭발 후 화재로 전이 연구)

  • Oh Kyu-Hyung;Lee Sung-Eun;Rhie Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.150-154
    • /
    • 2004
  • Gas explosion characteristics of hydrogen and liquefied petroleum gas(LPG) were measured in 6L cylindrical vessel, and experiment for explosion to fire transition phenomena of the gases were carried out using the 270L vessel. Explosion characteristics were measured using the stain type pressure transducer and explosion to fire transition phenomena was analyzed with the hish-speed camera. Base on the experiment, it was found that explosion pressure was most high slightly above the stoichiometric concentration, and explosion pressure rise rate and flame propagation velocity were proportional to the combustion velocity. And we find that those kind of explosion characteristics affect the explosion-to-fire transition, in addition, explosion flame temperature, flame residence time, are important parameters in explosion-to-fire transition.

Experimental study on the applicability of liquid air as the refrigerant in artificial ground freezing for subsea tunnels (해저터널을 위한 동결공법 냉매로서의 액화공기 적용성에 대한 실험적 연구)

  • Son, Young-Jin;Choi, Hyeungchul;Moon, Hung-Man;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In this paper, the liquid air was selected as the refrigerant in artificial ground freezing to be used for rapid ground freezing and to reduce the risk of suffocation and the applicability of liquid air was verified. In order to evaluate the stability of the liquid air, the oxygen concentration of mixtures with liquid nitrogen and liquid oxygen was experimentally examined to meet the oxygen concentration criteria in the Occupational Safety and Health Act. In addition, the effects of the mixture ratio of liquid nitrogen and liquid oxygen, pressure and flow rate change in the storage vessel on the oxygen concentration in the liquid air were investigated. As a result, the ratio of liquid nitrogen and liquid oxygen 8: 2 was shown to meet the oxygen concentration standards. Pressure and flow rate change in the storage vessel did not have significant effects on the oxygen concentration in the liquid air.

Manufacture and Experiment of Compensated Ionization Chamber for the Nuclear Power Reactor (동력로용 보상형 전리함의 제작 및 실험)

  • 육종철;고병준;박용집
    • 전기의세계
    • /
    • v.19 no.4
    • /
    • pp.18-23
    • /
    • 1970
  • A neutron detector, in general, can not be utilized as the thermal neutron detecting chamber in the nuclear power reactor, especially P.W.R. due to the characteristics of high temperature, high pressure and high neutron flux in a reactor vessel. We have performed an experiment to detect the thermal neutrons at 400.deg. C and high flux of thermal neutron in a power reactor. Coating boron-10 on the aluminium plates by means of surface diffusion method at 600.deg. C for 5 hours in an electric furace, also we made a typical chamber which was compensated ionization chamber filled with free air as an ionization gas. It was checked the chamber characteristics in the TRIGA MARK-II Reactor at the power level from zero to 250KW. The chamber current showed a perfect linear increase to power increase. However, many variation of the measured current were observed within the power of 50KW.

  • PDF