• Title/Summary/Keyword: High Pressure Resistance

Search Result 801, Processing Time 0.029 seconds

Effect of Molding Pressure on the Microstructure and Wear Resistance Property of Polycrystalline Diamond Compact (다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 내마모 특성에 미치는 초기 성형 압력의 영향)

  • Kim, Ji-Won;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.203-207
    • /
    • 2015
  • This study investigated the microstructure and wear resistance property of HPHT(high pressure high temperature) sintered PDC(polycrystalline diamond compact) in accordance with initial molding pressure. After quantifying an identical amount of diamond powder, the powder was inserted in top of WC-Co sintered material, and molded under four different pressure conditions (50, 100, 150, $200kgf/cm^2$). The obtained diamond compact underwent sintering in high pressure, high temperature conditions. In the case of the $50kgf/cm^2$ initial molding pressure condition, cracks were formed on the surface of PDC. On the other hand, PDCs obtained from $100{\sim}200kgf/cm^2$ initial molding pressure conditions showed a meticulous structure. As molding pressure increased, low Co composition within PDC was detected. A wear resistance test was performed on the PDC, and the $200kgf/cm^2$ condition PDC showed the highest wear resistance property.

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

Development of Evaluation and Prediction Model for Concrete High Speed Pumping (고강도콘크리트의 고속펌핑을 위한 압송성평가 및 예측모델에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-kyoo;Jeong, Woong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.201-203
    • /
    • 2012
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for the evaluation of concrete pumping performance for high speed construction of super-tall building. So, this study focuses on quantitative evaluation of concrete fluid characteristics and surface friction resistance under the change of concrete mix proportion and pumping condition. In this study, we measured the rheology of concrete and pipe pressure and surface friction characteristics when pumping. And, relations between the rheology characteristics of concrete and pumping performance was investigated by experiment. As the result of the experiment, high regression between the surface friction and pressure gradient was confirmed. And, prediction model to evaluate the friction resistance coefficient and pipe pressure reduction coefficient was suggested.

  • PDF

Effect of a Pressure Relief System in a High-speed Railway Tunnel (고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sang Pil
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • High-speed trains have been developed widely in many countries in order to transport large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. The resistance caused from air pressure induces micro pressure wave and discomfort to passengers in a train. Therefore, a pressure relief system should be installed in a tunnel to reduce the resistance acting against the running train in a tunnel. Additionally, the shape of a grain should be streamlined in order to reduce aerodynamic resistance caused by a high-speed train. The cross-section of a tunnel also should be carefully designed to reduce discomfort of passengers. This study represents the effect of pressure relief ducts installed between two running tunnels. The pressure relief duct was integrated with a cross-passage in order to save cost and construction time. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

A Study on Structural Analysis of Globe Valve for LNG Carrier (LNG선박용 글로브 밸브 구조해석에 관한 연구)

  • Kim, Dong-Kyoon;Kim, Jeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.1013-1019
    • /
    • 2007
  • This paper is about structural analysis of globe valve for controlling cryogenic LNG's flow or stop in normal temperature. The used valve is demanded safety resistance for inner pressure and temperature variation caused by using it in cryogenic, high pressure surrounding. This study evaluates for safety resistance for inner pressure and temperature variation by heat transfer analysis in cryogenic surrounding, heat stress analysis in temperature variation and deformation analysis in high pressure.

A Comparison of Standard Methods for Evaluating the Water Resistance of Shell Fabrics

  • Kwon, Myoung-Sook;Nam, Youn-Ja
    • The International Journal of Costume Culture
    • /
    • v.4 no.3
    • /
    • pp.241-248
    • /
    • 2001
  • Re water resistance of shell fabrics intended for we in outdoor apparel was measured using three different standard test methods, ASTM D 751, hydrostatic resistance, procedure A(Mullen test -- with and without a fabric support) and Procedure B (Hydrostatic head test). A database of information on their water resistance performance was created. The data collected with different methods were correlated and the advantages and disadvantages of each method were compared. The Mullen test with a support appears to give higher and more favorable water resistance values on shell fabrics preventing fabric rupture during the test. The hydrostatic head test gave lower hydrostatic pressure values than those measured on the two Mullen tests. The Mullen test is recommended for testing the water resistance of fabrics that high a relatively high water resistance because the Mullen tester applies a wide range of pressure. The hydrostatic head test is recommended for testing the fabrics that have relatively low water resistance. The area of the fabric sample that is in contact with the water is smaller in the Mullen test, so higher pressure levels can be reached and more samples should probably be tested to get a representative value for each fabric types. Furthermore, the hydrostatic head test was deemed more repeatable than the Mullen tests in his study.

  • PDF

Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models (증기압 및 크리프 모델을 사용한 고강도콘크리트 부재의 내화성능평가)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-40
    • /
    • 2010
  • A numerical model considering the vapor pressure and the creep models, in the form of a analytical program, for tracing the behavior of high strength concrete (HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

Implementation of Film Type Sensor for Synthetic Lube Oil and High Pressure Hydraulic Fluid Leak Detection (합성 윤활유 및 고압 작동유 누출감지 필름형 센서의 구현)

  • Park, No-Jin;Yu, Dong-Kuen;Yu, Hong-Kuen
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • Chemical sensors are used in various industrial facilities such high-risk and prevent the leakage of substances, important in life and environmental protection and the safe use of industry, used for management. In particular, high-temperature environments such as power generation equipment of the rotating part due to leakage generated by the various oil, power plants Shut Down, fire, work environment (exposure to various chemical solution and gas leak) and various water, air and soil pollution causes. Thus, over the long term through various channels such as crops and groundwater contamination caused by the slow, serious adverse effect on the ecosystem. In this paper, synthetic lube oil and high pressure hydraulic fluid leakage and immediately detect a new Printed Electronic implementation of technology-based film-type sensors, and its performance test. Thus, industrial accidents and environmental pollution and for early detection of problems, large accidents can be prevented. Experimental results of the synthetic lube oil and high pressure hydraulic fluid solution after the contact time depending on the experiment and the oil solution of the sensor material of the conductive porous PE resistance value by a chemical reaction could be confirmed that rapid increase. Also implemented in the film-type oil sensor electrical resistance change over time of the reaction rate and the synthetic lube oil is about 2 minutes or less, the high pressure hydraulic fluid is less than about 1 minute was. Therefore, more high-pressure hydraulic fluid such as a low volatility synthetic lube oils are the resistance change and the reaction rate was confirmed to be the slowest.

Characteristics of Burst Pressure and Abrasion Resistance of Concrete Hose with Aramid Fiber Reinforcement and Rubber Composition (아라미드 섬유강화 및 고무조성에 따른 콘크리트 도킹호스의 파열압력과 내마모도 특성)

  • Kim, Yong-Hwan;Lee, Seung-Hwan;Sung, Il-Kyung;Lee, Yu-wool;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-110
    • /
    • 2018
  • A concrete docking hose of pump car's boom pipe line have been used in many construction sites. They are long structures with continuous cornering, similar to a trunk of the elephant, characterized by a very high pressure resistance of 20MPa. They need flexible materials and structure in order to move the hose smoothy. But commercial concrete hose is hard to handle and heavy owing to adaption of steel reinforcement. In this study, it is tried an experimental approach to the characteristic of inner rubber layer and abrasion resistance. Also, we are investigated the bursting pressure according to the reinforcement of the hose and propose the usefulness of the hose reinforced with high strengthened aramid fiber.