• 제목/요약/키워드: High Pressure Hydrolysis

검색결과 41건 처리시간 0.03초

Optimization of Subcritical Water Hydrolysis of Rutin into Isoquercetin and Quercetin

  • Kim, Dong-Shin;Lim, Sang-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제22권2호
    • /
    • pp.131-137
    • /
    • 2017
  • Maximum production of isoquercetin and quercetin simultaneously from rutin by subcritical water hydrolysis (SWH) was optimized using the response surface methodology. Hydrolysis parameters such as temperature, time, and $CO_2$ pressure were selected as independent variables, and isoquercetin and quercetin yields were selected as dependent variables. The regression models of the yield of isoquercetin and quercetin were valid due to the high F-value and low P-value. Furthermore, the high regression coefficient indicated that the polynomial model equation provides a good approximation of experimental results. In maximum production of isoquercetin from rutin, the hydrolysis temperature was the major factor, and the temperature or time can be lower if the $CO_2$ pressure was increased high enough, thereby preventing the degradation of isoquercetin into quercetin. The yield of quercetin was considerably influenced by temperature instead of time and $CO_2$ pressure. The optimal condition for maximum production of isoquercetin and quercetin simultaneously was temperature of $171.4^{\circ}C$, time of 10.0 min, and $CO_2$ pressure of 11.0 MPa, where the predicted maximum yields of isoquercetin and quercetin were 13.7% and 53.3%, respectively. Hydrolysis temperature, time, and $CO_2$ pressure for maximum production of isoquercetin were lower than those of quercetin. Thermal degradation products such as protocatechuic acid and 2,5-dihydroxyacetophenone were observed due to pyrolysis at high temperature. It was concluded that rutin can be easily converted into isoquercetin and quercetin by SWH under $CO_2$ pressure, and this result can be applied for SWH of rutin-rich foodstuffs.

Hydrolysis of Penicillin G and Carbenicillin in Pure Water - As Studied by HPLC/ESI-MS

  • Kolek, Marta;Franski, Rafal;Franska, Magdalena
    • Mass Spectrometry Letters
    • /
    • 제10권4호
    • /
    • pp.108-111
    • /
    • 2019
  • The hydrolysis of penicillin G, carbenicillin and ampicillin in pure water at room temperature was studied by high pressure liquid chromatography electrospray ionization mass spectrometry. Hydrolysis of ampicillin did not occur under these conditions; however, penicillin G and carbenicillin were completely hydrolyzed after seven days. A short interpretation of this difference is proposed. The mass spectrometric behaviour, namely ESI response and fragmentation pathway, of hydrolyzed penicillin G and hydrolyzed carbenicillin have been also discussed.

전자렌지 반응을 이용한 인삼 사포닌의 신속한 가수분해법 (Rapid Hydrolysis of Ginseng Saponin by Microwave Oven Reaction)

  • Park, Man-Ki;Park, Jeong-Hill;Kang, Jong-Seong;Lee, Mi-Young;Park, Young-In;Yu, Su-Jeong;Han, Byung-Hoon
    • Journal of Ginseng Research
    • /
    • 제17권1호
    • /
    • pp.35-38
    • /
    • 1993
  • A new and rapid method for the hydrolysis of ginsenosides to panaxadiol or panaxatriol was developed. It is based on the microwave oven reaction, which is high temperature and high-pressure reaction. The optimal hydrolysis time using 5% $H_2SO_4$ solution was found at 10 min PTFE reaction vessel in microwave oven, which is more than 30 times faster than the conventional hydrolysis method.

  • PDF

Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates

  • Lee, Mi-Yeon;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • 한국축산식품학회지
    • /
    • 제33권4호
    • /
    • pp.474-480
    • /
    • 2013
  • This study was performed to investigate the effects of high pressure/high temperature (HPHT) treatment on the recovery efficiency and characteristics of porcine placenta hydrolysates. The placenta hydrolysates were characterized by solubility, free amino acid contents, gel electrophoresis, gel permeation chromatography (GPC) and amino acid composition. Placenta was treated at 37.5 MPa of pressure combined with various temperatures (150, 170, and $200^{\circ}C$) or various holding times (0, 30, and 60 min at $170^{\circ}C$). Insoluble raw placenta collagen was partially solubilized (> 60% solubility) by the HPHT treatment. Free amino group content of placenta collagen was increased from 0.1 mM/g collagen to > 0.3 mM/g collagen after HPHT treatment, reflecting partial hydrolysis of collagen. The molecular weight ($M_w$) distribution showed evidence of collagen hydrolysis by shifting of $M_w$ peaks toward low molecular weight when treated temperature or holding time was increased. Alanine (Ala), glycine (Gly), hydroxyproline (Hyp), and proline (Pro) contents increased after the HPHT treatments compared to a decrease in the others. In particular, the increase in Gly was obvious, followed by Hyp and Pro, reflecting that placenta hydrolysates were mainly composed of these amino acids. However, increasing temperature or holding time hardly affected the amino acid compositions. These results indicate that the HPHT treatment is advantageous to hydrolyze collagen derived from animal by-products.

고압/효소분해 처리에 의한 멸치 가수분해물의 제조 및 특성분석 (Preparation and Physicochemical Characteristics of Anchovy Hydrolysates Produced by High Hydrostatic Pressure and Enzymatic Hydrolysis Treatment)

  • 김민지;남궁배;김복남;이수정;김철진;조용진;김종태
    • 산업식품공학
    • /
    • 제13권2호
    • /
    • pp.85-91
    • /
    • 2009
  • 천연조미소재 개발을 위하여 고압/효소분해 시스템에서 멸치 단백질의 분해 품질특성을 탐색한 결과, 최적 조건은 효소농도 0.6%, 온도 50$^{\circ}C$, 처리시간 24시간 및 압력 50MPa로 확인되었다. 멸치 단백질의 처리방법에 따른 품질 특성을 비교한 결과, 최적조건하에서 고압/효소 처리한 멸치 가수분해물의 품질특성이 가열추출물인 대조구에 비하여 2.8배, 2배, 1.4배 증가하여 고압/효소 처리에 의한 단백질 가수분해물 생산은 가열추출법이나 고압반응에 비하여 효율적인 방법으로 나타났다. 효소종류에 따른 분해력은 복합효소로 가수분해한 경우 상업효소에 비하여 큰 증가율을 나타내어 복합효소의 분해력이 상업효소에 비하여 우수 하였다. 고압/효소 처리 후의 멸치 가수분해물은 정미성 아미노산으로 알려져 있는 glutamic acid, glycine, arginine 및 alanine 등의 함량이 대조구나 압력 처리구의 유리아미 노산 함량에 비하여 증가하였다. 결론적으로 고압/효소분해 처리공정은 멸치 단백질의 효과적 분해와 정미성 아미노산 생산에 효율적인 기술임을 확인하였다.

효소 가수분해 향상을 위해 고압조건에서 Glycerol 수용액을 사용한 폐지의 전처리 (Pretreatment of Wastepaper using Aqueous Glycerol under High Pressure to Enhance Enzymatic Hydrolysis)

  • 서동일;김창준;김성배
    • KSBB Journal
    • /
    • 제29권3호
    • /
    • pp.193-198
    • /
    • 2014
  • Pretreatment of wastepaper using aqueous glycerol under high pressure was studied to enhance the enzymatic hydrolysis. The pretreatment was conducted over a wide range of conditions including temperatures of $150{\sim}170^{\circ}C$, sulfuric acid concentrations of 0.5~1.5%, and reaction times of 30~90 minutes. After the effect of glycerol concentration on the pretreatment performance was investigated, 70% glycerol was selected. As glycerol concentration was increased, higher digestibility was achieved due to higher lignin removal. The optimum condition was found to be around $160^{\circ}C$, 1%, and 60 minutes. At this condition, 60% and 35% of hemicellulose and lignin, respectively, were removed, while only 5% of cellulose was lost. The enzymatic digestibility was 76%, meaning that 73% of the glucan present in the initial substrate was recovered as glucose after enzymatic hydrolysis. Also, it was found that the temperature and acid concentration than the reaction time were more strongly related to the compositional removals and enzymatic digestibility.

목질계 바이오매스의 이용(제3보)-탈리그닌 처리한 폭쇄재의 산가수분해- (Utilization of Ligno-cellulosic Biomass(III)-Acid Hydrolysis of Exploded Wood after Delignification)

  • 양재경;장준복;임부국;이종윤
    • 펄프종이기술
    • /
    • 제29권4호
    • /
    • pp.18-27
    • /
    • 1997
  • This study was performed to obtained the optimal delignified condition of exploded wood on the acid hydrolysis with sulfuric acid. Wood chips of pine wood(Pinus desiflora), oak wood(Quercus serrata) and birch wood (Betula platyphylla var. japonica) were treated with a high pressure steam (20-30kgf/$\textrm{cm}^2$, 2-6 minutes). The exploded wood was delignified with sodium hydroxide and sodium chlorite, and then hydrolyzed with sulfuric acid. The result can be summerized as follows ; In the exploded wood treated with sodium hydroxide, the optimal concentration of sodium hydroxide was 1% as content of lignin in the exploded wood. Lignin content of exploded wood treated with sodium chlorite was lower then that sodium hydroxide. The maximum reducing sugar yield of exploded wood treated with 1% sodium hydroxide was lower than non-treated exploded wood. In the case of sodium chlorite treated, the maximum reducing sugar yield was hgher than non-treated exploded wood. Sugar composition of acid hydrolysis solution was composed of xylose and glucose residue, and the rate of glucose residue was increased in high pressure condition.

  • PDF

폐 유리의 가수 분해반응에 의한 발포유리의 제조(I) - 폐유리의 가수분해 반응 - (Production of Foamed Glass by Using Hydrolysis of Waste Glass (I) - Hydrolysis of Waste Glass -)

  • 이철태;이홍길
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.519-526
    • /
    • 2005
  • 소다석회 조성의 폐 유리를 발포유리의 원료로 활용하기 위해 폐유리의 가수분해를 시도하였다. 소다석회유리 조성으로 만들어진 판유리 및 병 유리 등은 공히 가압 하에서 증기상의 물 또는 액체상의 물에 의해 효율적으로 가수분해가 진행되었다. 최적의 가수분해의 조건은 공히 $250^{\circ}C$, 2 h이었으며 이 조건하에 얻어진 수화유리의 함수율은 발포유리의 원료유리로서 발포화가 가능한 7.85~10.04%였다. 수식제인 Na성분은 액상의 물에 의한 가수 분해에 효율적이며 유시시료에 대한 중량비로서 0.04첨가 시 가장 높은 함수율을 지닌 수화유리가 얻어졌다.

고온 고압 유체를 이용한 고농도 시안폐액의 환경친화 기술에 관한 연구 (A Study on the Environment Familiar Technology of High Dense Cyanogen Wastewater by Using High Temperature and High Pressure Materiality)

  • 황상용;이규성
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.141-147
    • /
    • 1998
  • Under high temperature and high pressure, cyanogen disinter gration distruction mechanism brought followings results through continuous plug flow reactor system. 1. The temperature was a important reacting factor in cyanogen disintegration. Over $612.8^{\cird}K$ high disintegration rate or 99.99% was shown even under $2000{\;}mg/{\ell}$ cyanogen density. 2. The conditions of cyanogen disintegration was gained through experimenting the supercrietical condition of water in basic. To gain 99.99% disintegration rate under $1000{\;}mg/{\ell}$ early cyanogen density, the pressure showed 52.8 seconds at $523^{\cird}K$ and 84.2 atm and gained $0.56{\;}mg/{\ell}$ operating density. 3. Here is the reaction velocity formula of cyanogen disintegration by hydrolysis: This formula indicates the high possibility of cyanogen disintegration within a short time. And it also implys the potential possibility on treating NBDICOD and the technology in developing the environment cleaning progress as small size automatic controlling equipment.

  • PDF

농약의 물리화학적 특성 연구 (II) Flupyrazofos의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수 (Study on Physicochemical Properties of Pesticides. (II) Water Solubility, Hydrolysis, Vapor Pressure, and Octanol/water Partition Coefficient of Flupyrazofos)

  • 김정한;김용화;김균
    • Applied Biological Chemistry
    • /
    • 제40권1호
    • /
    • pp.76-79
    • /
    • 1997
  • 국내에서 최초로 합성, 개발된 유기인계 살충제인 flupyrazofos(KH-502)의 물리화학적 특성으로 수용성, 가수분해, 증기압, 분배계수를 EPA와 OECD 방법에 준하여 측정하였다. 수용성은 $25^{\circ}C$에서 0.80 ppm으로 낮았고 가수분해 반감기는 $25^{\circ}C$에서 266.5시간(pH 4.0), 180.0시간(pH 7.0), 120.9시간(pH 9.0)으로 알칼리 조건에서 불안정하였으며 $40^{\circ}C$에서는 $25^{\circ}C$보다 $2{\sim}4$배 정도 가수분해가 빠르게 진행되었다. 상은($25^{\circ}C$)에서의 증기압은 $2.81{\times}10^{-5}$ torr로 측정되었고, 다른 두 온도(35, $45^{\circ}C$)에서 증기압을 측정하여 log P=0.673-(1565.4/T)라는 관계식을 구하였다. Flupyrazofos의 상온($25^{\circ}C$)에서의 증기압은 diazinon과 유사한 수준이었고, DDVP보다는 약 1,000배 정도 낮은 수치로 휘발에 의하여 환경에 영향을 미칠 가능성은 낮을 것으로 판단되었다. Flupyrazofos의 옥탄올/물 분배계수치를 보면(log Kow=5.24) 먹이연쇄를 통한 생물농축이 예상되나 비교적 가수분해가 빠르기 때문에 비록 수계에 노출된다고 하여도 그 가능성은 매우 낮을 것으로 사료된다.

  • PDF