• Title/Summary/Keyword: High Pressure Freezing

Search Result 63, Processing Time 0.03 seconds

THE EVALUATION OF PERIODONTAL LIGAMENT CELLS OF RAT TEETH AFTER LOW-TEMPERATURE PRESERVATION UNDER HIGH PRESSURE (고압-저온 보관에 따른 쥐 치아 치주인대세포의 활성도 평가)

  • Chung, Jin-Ho;Kim, Jin;Choi, Seong-Ho;Kim, Eui-Seong;Park, Ji-Yong;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.285-294
    • /
    • 2010
  • The purpose of this study was to evaluate the viability of periodontal ligament cells of rat teeth after low-temperature preservation under high pressure by means of MTT assay, WST-1 assay. 12 teeth of Sprague-Dawley white female rats of 4 week-old were used for each group. Both side of the first and second maxillary molars were extracted as atraumatically as possible under tiletamine anesthesia. The experimental groups were group 1 (Immediate extraction), group 2 (Slow freezing under pressure of 3 MPa), group 3 (Slow freezing under pressure of 2 MPa), group 4 (Slow freezing under no additional pressure), group 5 (Rapid freezing in liquid nitrogen under pressure of 2 MPa), group 6 (Rapid freezing in liquid nitrogen under no additional pressure), group 7 (low-temperature preservation at $0^{\circ}C$ under pressure of 2 MPa), group 8 (low-temperature preservation at $0^{\circ}C$ under no additional pressure), group 9 (low-temperature preservation at $-5^{\circ}C$ under pressure of 90 MPa). F-medium and 10% DMSO were used as preservation medium and cryo-protectant. For cryo-preservation groups, thawing was performed in $37^{\circ}C$ water bath, then MTT assay, WST-1 assay were processed. One way ANOVA and Tukey HSD method were performed at the 95% level of confidence. The values of optical density obtained by MTT assay and WST-1 were divided by the values of eosin staining for tissue volume standardization. In both MTT and WST-1 assay, group 7 ($0^{\circ}C$/2 MPa) showed higher viability of periodontal ligament cells than other group (2-6, 8) and this was statistically significant (p < 0.05), but showed lower viability than group 1, immediate extraction group (no statistical significance). By the results of this study, low-temperature preservation at $0^{\circ}C$ under pressure of 2 MPa suggest the possibility for long term preservation of teeth.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

Influence of Freezing Rate on the Aroma Retention in a Freeze Drying System (동결건조 시스템에서 동결속도가 향미물질 보존에 미치는 영향)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on aroma retention and to examine the mechanism of aroma retention during freeze drying process. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80${\times}$20mm) containing diacetyl(2mg/ml) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom measured and diacetly contents. Besides, we observed the effect of the relative humidity of the diacetyl contents freeze-dried gelatin during storage. The retained diacetyl content was increased at high freezing temperature and in order of 0∼5, 5∼10, 10∼15, 15∼20 mm section from the bottom of the sample. It was observed that the retained diacetyl content was high in 15∼20 mm section. The retained diacetyl content and freeze-dried gelatin stored in the condition of high relative humidity was decreased significantly but in the low relative humidity case, was it decreased in small amount. The results of our experiment resents that the low temperature freezing and low humidity storing condition is effective for preserving aroma compound in food.

  • PDF

Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete (슬래그를 다량 치환한 콘크리트의 동결융해 저항성능에 미치는 미세공극의 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Song, Gwon-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, effects of micropores on the freezing-thawing resistance of high volume slag concrete are reviewed. Concrete was made with slag which contains the ground granulated blast furnace slag(GGBS) and the pig iron preliminary treatment slag(PS) by replacing 0, 40, 70 %, then compressive strength, freezing-thawing resistance, micropores were reviewed. Also, specified design strength, target air contents were set. Deterioration was induced by using 14-day-age specimen which has low compressive strength for evaluating deterioration by freeze-thawing action. As results of the experiment, despite of specified design strength which has been set similarly and ensured target air contents, the pore size distribution of the concrete showed different results. Micropores in GGBS70 specimen have small amount of water which is likely to freeze because there is small amount of pore volume of 10~100 nm size at 0 cycle which has not been influenced by freezing-thawing. For these reasons, it was confirmed that the freezing-thawing resistance performance of GGBS70 is significantly superior than other specimens because relatively small expansion pressure is generated compared to the other specimens.

The design concept of the cubicle to improve freezing performance for high speed train (고속열차 배전반의 냉각성능 신뢰성 향상 방법에 대한 연구)

  • Choi, Kwon-Hee;Jeong, Byung-Ho;Lee, Byung-Seok;Park, Jong-Hun;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.905-910
    • /
    • 2007
  • The cubicle of high speed train is the equipment where the important train- operating equipments are concentrated, so it requires the higher safety and reliability than any other equipment. Recently, the power car cubicle of KTX-II is, basically similar to that of KTX-I and HSR350x in its size, but consequently, as more sophisticated ATP/ATC and other parts are added, the order company points out the problem of rising temperature in summer. Especially, the interpretation about the possibility of guaranteeing the minimum freezing performance becomes necessary, when Fan Tray is out of order. This paper presents the method of improving the freezing performance while minimizing the effect of dust, and the method of guaranteeing the present freezing performance by the best arrangement of Fan Tray, when Fan Tray is out of order. And as a method of verifying this, we would like to predict the pressure, speed of a running fluid and temperature distribution of cubicle through the flow analysis.

  • PDF

Quality Changes of Jujube Wine by Hydrostatic Pressure and Freezing Treatment during Storage (초고압 및 냉동처리에 의한 대추술의 저장 중 품질변화)

  • Park, Hee-Joeng;Kim, Kwang-Yup;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.89-97
    • /
    • 2009
  • Jujube wine was treated with hydrostatic pressure (500 MPa, 5 min) or freezing ($-20^{\circ}C$, 3 days and thawed $20^{\circ}C$, 4 hr) and their microbial counts, physicochemical properties, and sensory characteristics were investigated during storage at $35^{\circ}C$ for 60 days. Microorganisms in pressure-treated jujube wine were not detected during the whole period and chemical compositions as well as color were slightly changed. Sensory quality was significantly preserved until 20 days without increasing sweet aroma and taste. In freezing-treated wine, bacterial counts were decreased after 10 days and remained below 10 CFU/mL while lactic acid bacteria and yeast were not detected. Changes of chemical composition were smaller than those of the untreated wine but bigger than those of the pressure-treated or heat-treated wine. Instrumental color was changed after $10{\sim}20$ days resulting from the increase of L value and the reduction of a value. Sensory quality was significantly similar with the fresh wine for 10 days, suggesting that pressure treatment would be the most effective sterilization method to improve the shelf life of jujube wine whereas freezing treatment would be insufficient.

Experimental study on the applicability of liquid air as the refrigerant in artificial ground freezing for subsea tunnels (해저터널을 위한 동결공법 냉매로서의 액화공기 적용성에 대한 실험적 연구)

  • Son, Young-Jin;Choi, Hyeungchul;Moon, Hung-Man;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In this paper, the liquid air was selected as the refrigerant in artificial ground freezing to be used for rapid ground freezing and to reduce the risk of suffocation and the applicability of liquid air was verified. In order to evaluate the stability of the liquid air, the oxygen concentration of mixtures with liquid nitrogen and liquid oxygen was experimentally examined to meet the oxygen concentration criteria in the Occupational Safety and Health Act. In addition, the effects of the mixture ratio of liquid nitrogen and liquid oxygen, pressure and flow rate change in the storage vessel on the oxygen concentration in the liquid air were investigated. As a result, the ratio of liquid nitrogen and liquid oxygen 8: 2 was shown to meet the oxygen concentration standards. Pressure and flow rate change in the storage vessel did not have significant effects on the oxygen concentration in the liquid air.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (I) - The Influence of a Pressure Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (I) - 압력비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1291-1298
    • /
    • 2005
  • Since the interior shape of a pressure regulator is complex and the change of fluid resistance at each operation condition is rapid and big, the pressure regulator can become the major factor that causes big loss in pipelines. So the suitable pressure regulator modeling by each operation condition is important to obtain reliable results especially in small scale pipeline network analysis. And in order to prevent the condensation and freezing problems, it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models at every inlet-outlet pressure ratio. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio. Additionally it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio. Furthermore, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio too.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF