• Title/Summary/Keyword: High Power-Factor

Search Result 1,915, Processing Time 0.028 seconds

AC-DC buck converter topology of high power factor with soft switching mode (소프트 스위칭 모드에 의한 고역률의 AC-DC 강압형 컨버터 토폴로지)

  • 문상필;서기영;전중함;김영철;김준홍;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.417-422
    • /
    • 1997
  • This paper proposed that a AC-DC Converter topology of high power factor with soft switching mode operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging engergy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.

Electric energy saving system with high speed response to load variation using power-factor correction (부하변동에 속응하는 역률개선형 전력절감시스템)

  • Kim, Tae-Soo;Kang, Hyung-Sik;Joo, Kyung-Don;Lyu, Seung-Heon;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2388-2390
    • /
    • 2002
  • Small type electric energy saving system is proposed in this paper. The system improves power factor fastly according to load variation of each customer. Phases of voltage and current are detected as 1[ms] unit. Phase coincident algorithm is applied for power factor improvement. Capacitance is controlled for optimal power factor correction. Series reactor is controlled for harmonics reduction. Non-contact device is used for fast response and long life. Test result shows the effect of this system. Power factor of 40[W] electric fan is improved from 95[%] to 100[%]. In the case of electric light, power factor is improved from 82[%] to 100[%]. Response time for load variation is less than 1[ms].

  • PDF

High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching (단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터)

  • Jung, S.H.;Kwon, S.K.;Suh, K.Y.;Lee, H.W.;Gac, D.K.;Kim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF

High-Power-Factor Boost Rectifier with a Passive Energy Recovery Snubber

  • Kim, Marn-Go;Baek, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.668-676
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. These equivalent circuits are analyzed so that the overshoot voltage across the main switch, the snubber current, and the turn-off transition time can be predicted analytically. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

Power Factor Correction of the Single-State AC/DC Converter with Low conduction Loss and High Efficiency

  • Ryu, Myung-Hyo;Choi, Byungcho;Kim, Heung-Geun;Cha, Young-Kil
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.281-286
    • /
    • 1998
  • This paper proposes a new single-stage, single-switch AC/DC converter based on the boost power factor correction (PFC) cell. The converter offers both high power factor and high efficiency. To reduce the dc voltage on the energy storage capacitor, the dc bus voltage feedback method was used. A 100W (5V/20A) prototype was built and tested to show the validity of the proposed converter.

  • PDF

Microcontroller based Single-phase SRM Drive with High Power Factor (마이크로 콘트롤러기반의 고역률형 단상 SRM 구동)

  • Ahn, Jin-Woo;Lee, Zhen-Guo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.90-96
    • /
    • 2006
  • A novel high power factor drive of a single-phase switched reluctance motor (SRM) is researched. It achieves sinusoidal and near unity power factor input currents. The proposed SRM drive has one additional active switches. And a single-stage approach has a simple structure and low cost. A prototype to drive an SRM equipping a suitable encoder is designed to evaluate the proposed topology. The characteristics and validity of the proposed circuit is discussed with some simulations and experimental results.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

A Novel Control Strategy for a Three-Phase Rectifier with High Power Factor and Stable Output Voltage

  • Lee, Hong-Hee;Phan, Van-Tung;Sergey, Brovanov;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 2007
  • In this paper, a proposed approach to improve the power factor of three-phase rectifiers and to stabilize the output voltage against load change is presented. The elements of the given control strategy are small size, low cost, high performance, and simplicity. The proposed control strategy of switches is based on a prototype of three bi-directional switched consisting of four diodes and one IGBT. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.

A Study on the Power Control Characteristics of a Power Supply for Electrodeless Lamp (무전극 램프(Electrodeless Lamp) 구동용 전원장치의 전력제어 특성에 관한 연구)

  • Lee, Sung-Geun;Jeon, Su-Kyun;Jang, Min-Kyu;Kim, Dong-Sok;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.65-67
    • /
    • 2003
  • This paper describes a design of power supply for electrodeless lamp system to be easy to control electric power widely keeping the high power factor. Proposed system is composed of power factor correction(PFC) circuit, half bridge(HB) inverter, high voltage transformer, full wave rectifier to supply dc number kV's magnetron(MGT) anode voltage in the second of high voltage transformer and magnetron. It was confirmed that the proposed circuits can correct the 99.8[%] power factor and control input power of the magnetron up to 33.3[%] linearly by adjusting of pulse frequency of the inverter through the experiment.

  • PDF