• Title/Summary/Keyword: High Power LED

Search Result 606, Processing Time 0.031 seconds

Properties of charge/discharge in synthesis method or substituting transition element for Li-Mn Oxide (전이금속 치환 및 합성방법에 따른 Li-Mn 산화물의 충방전 특성)

  • Jee, Mi-Jung;Choi, Byung-Hyun;Lee, Dae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.46-46
    • /
    • 2007
  • There has been rapid progress in the portable electronics industry. which has led to a great increase for a demand of portable, lightweight power sources. Lithium 2'nd batteries have met these demand. and many studies on the cahtod materials for the lithium 2,nd batteries have been reported during the last decade. Possible candidates for the cathode materials for lithium 2,nd batteries are $LiCoO_2$, $LiNiO_2$, and $LiMn_2O_4$. Currently $LiCoO_2$ is widely used. but $LiMn_2O_4$ is an excellent alternative material in view of its several advantages such a low cost as well as the wasy availability of raw materials and environmental benignity. In this study, find the most suitable synthesis method that satisfied high capacitor and stability cycle character, etc in Li-Mn oxide for 2'nd batteries. And also made an experiment on doping the $LiMn_2O_4$ spinel with a small amount of metal ions has a remarkable effect on the electrochemical properties and characterics of powder, BET, PSA, Porosity, etc.

  • PDF

Induction of Defense-Related Physiological and Antioxidant Enzyme Response against Powdery Mildew Disease in Okra (Abelmoschus esculentus L.) Plant by Using Chitosan and Potassium Salts

  • Soliman, Mona H.;El-Mohamedy, Riad S.R.
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • Foliar sprays of three plant resistance inducers, including chitosan (CH), potassium sorbate (PS) ($C_6H_7kO_2$), and potassium bicarbonates (PB) ($KHCO_3$), were used for resistance inducing against Erysiphe cichoracearum DC (powdery mildew) infecting okra plants. Experiments under green house and field conditions showed that, the powdery mildew disease severity was significantly reduced with all tested treatments of CH, PS, and PB in comparison with untreated control. CH at 0.5% and 0.75% (w/v) plus PS at 1.0% and 2.0% and/or PB at 2.0% or 3.0% recorded as the most effective treatments. Moreover, the highest values of vegetative studies and yield were observed with such treatments. CH and potassium salts treatments reflected many compounds of defense singles which leading to the activation power defense system in okra plant. The highest records of reduction in powdery mildew were accompanied with increasing in total phenolic, protein content and increased the activity of polyphenol oxidase, peroxidase, chitinase, and ${\beta}$-1,3-glucanase in okra plants. Meanwhile, single treatments of CH, PS, and PB at high concentration (0.75%, 2.0%, and/or 3.0%) caused considerable effects. Therefore, application of CH and potassium salts as natural and chemical inducers by foliar methods can be used to control of powdery mildew disease at early stages of growth and led to a maximum fruit yield in okra plants.

Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties (공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석)

  • Kang, Taewook;Kang, Hyeonwoo;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2019
  • LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.

Analysis of the Meaning of Subculture Aspects in Luxury Fashion Brands (럭셔리 패션브랜드에 나타난 하위문화 양상의 의미 분석)

  • Han, Cha Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.1
    • /
    • pp.83-98
    • /
    • 2022
  • This study identified the characteristics of the subculture aspects that led to the success of luxury brands and analyzed the implications of those aspects. For this, semantic analysis in a socio-cultural context was performed. Additionally, this study took the theoretical background, the change in subculture and post-subculture, the digital youth generation, and the change in the meaning of subculture style into consideration. The subculture style aspect and its meaning in luxury fashion brands were analyzed as follows: First, there are challenges that betray the legitimacy or values of luxury brands. Through this, the brand gained recognition and increased sales, and the designer gained a reputation as an innovative creative director. It can be seen that more successful branding was promoted by securing a more subcultured fandom. Second, by combining subculture image fragments, these brands cater to the diverse tastes of a myriad of subcultures. This maximizes commercial profits. Third, most promotional marketing activities are collaborative and done digitally, which allows for a wider customer base, but the difference is in digital capabilities. Limited editions or application use on social networks can act as another driver. It is said that the distinction in high-priced luxury brands is not only driven by economic power but also by sub-cultural capital and digital ability.

Changes in the Structure of Collaboration Network in Artificial Intelligence by National R&D Stage

  • Hyun, Mi Hwan;Lee, Hye Jin;Lim, Seok Jong;Lee, KangSan DaJeong
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.12-24
    • /
    • 2022
  • This study attempted to investigate changes in collaboration structure for each stage of national Research and Development (R&D) in the artificial intelligence (AI) field through analysis of a co-author network for papers written under national R&D projects. For this, author information was extracted from national R&D outcomes in AI from 2014 to 2019. For such R&D outcomes, NTIS (National Science & Technology Information Service) information from the KISTI (Korea Institute of Science and Technology Information) was utilized. In research collaboration in AI, power function structure, in which research efforts are led by some influential researchers, is found. In other words, less than 30 percent is linked to the largest cluster, and a segmented network pattern in which small groups are primarily developed is observed. This means a large research group with high connectivity and a small group are connected with each other, and a sporadic link is found. However, the largest cluster grew larger and denser over time, which means that as research became more intensified, new researchers joined a mainstream network, expanding a scope of collaboration. Such research intensification has expanded the scale of a collaborative researcher group and increased the number of large studies. Instead of maintaining conventional collaborative relationships, in addition, the number of new researchers has risen, forming new relationships over time.

Research Trends in Low-Cost Photoactive Layer Materials for Organic Solar Cells (유기태양전지 저비용 광활성층 재료의 개발 동향)

  • Soyoung Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.143-151
    • /
    • 2024
  • Organic photovoltaics (OPVs) have shown great potential as a new generation of energy harvesters because they possess many unique properties, including mechanical flexibility, lightweight, semi-transparency, and low-fabrication costs. Recent advancements in molecular structure and device engineering have led to achieving power conversion efficiency (PCE) exceeding 19%. However, these highly efficient active layer materials have been hampered in their commercialization by complex synthesis steps that result in high manufacturing costs. To address this issue, research is actively underway on low-cost active layer materials with simple structures. This paper introduces such cost-effective active layer materials and strategies for their synthesis.

Regression Analysis-based Model Equation Predicting the Concentration of Phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon - (피톤치드(모노테르펜) 농도 예측을 위한 회귀분석 기반 모델식 -춘천 수리봉을 중심으로-)

  • Lee, Seog-Jong;Kim, Byoung-Ug;Hong, Young-Kyun;Lee, Yeong-Seob;Go, Young-Hun;Yang, Seung-Pyo;Hyun, Geun-Woo;Yi, Geon-Ho;Kim, Jea-Chul;Kim, Dae-Yeoal
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.548-557
    • /
    • 2021
  • Background: Due to the emergence of new diseases such as COVID-19, an increasing number of people are struggling with stress and depression. Interest is growing in forest-based recreation for physical and mental relief. Objectives: A prediction model equation using meteorological factors and data was developed to predict the quantities of medicinal substances generated in forests (monoterpenes) in real-time. Methods: The concentration of phytoncide and meteorological factors in the forests near Chuncheon in South Korea were measured for nearly two years. Meteorological factors affecting the observation data were acquired through a multiple regression analysis. A model equation was developed by applying a linear regression equation with the main factors. Results: The linear regression analysis revealed a high explanatory power for the coefficients of determination of temperature and humidity in the coniferous forest (R2=0.7028 and R2=0.5859). With a temperature increase of 1℃, the phytoncide concentration increased by 31.7 ng/Sm3. A humidity increase of 1% led to an increase in the coniferous forest by 21.9 ng/Sm3. In the deciduous forest, the coefficients of determination of temperature and humidity had approximately 60% explanatory power (R2=0.6611 and R2=0.5893). A temperature increase of 1℃ led to an increase of approximately 9.6 ng/Sm3, and 1% humidity resulted in a change of approximately 6.9 ng/Sm3. A prediction model equation was suggested based on such meteorological factors and related equations that showed a 30% error with statistical verification. Conclusions: Follow-up research is required to reduce the prediction error. In addition, phytoncide data for each region can be acquired by applying actual regional phytoncide data and the prediction technique proposed in this study.

NUWARD SMR safety approach and licensing objectives for international deployment

  • D. Francis;S. Beils
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1029-1036
    • /
    • 2024
  • Drawing on the deep experience and understanding of the principles of nuclear safety, as well as many years of nuclear power plant design and operation, the EDF led NUWARD SMR Project is developing a design for a Small Modular Reactor (SMR) of 340 MWe composed of two 170 MWe independent units, that will supplement the offering of high-output nuclear reactors, especially in response to specific needs such as replacement of fossil-fuelled power plants. NUWARD SMR is a mix of proven and innovative design features that will make it more commercially competitive, while integrating safety features that comply with the highest international standards. Following the principles of redundancy and diversity and rigorous application of Defence in Depth (DID), with an international view on nuclear safety licensing, the Project also incorporates new safety approaches into its design development. The NUWARD SMR Project has been in development for a number of years, it entered conceptual design formally in mid-2019 and entered Basic Design in 2023. The objective of the concept design phase was to confirm the project technological choices and to define the first design configuration of the NUWARD SMR product, to document it, in order to launch pre-licensing with the French Safety Authority (ASN) and to define its estimated cost and its subsequent development and construction schedules. As a delivery milestone the Safety Options file (called the Dossier d'Options de Sûreté (DOS)) has been submitted to ASN in July 2023 for their opinion. An integral part of the NUWARD SMR Project, is not only to deliver a design suitable for France and to satisfy French regulation, but to develop a product suitable and indeed desirable, for the international market, with a first focus in Europe. In order to achieve its objectives and realise its market potential, the NUWARD SMR Project needs to define and realise its safety approach within an international environment and that is the key subject of this paper. The following paper: • Summarises the foundation principles and technological background which underpin the design; • Contextualises the key design features with regard to the international safety regulatory framework with particular emphasis on innovative passive safety aspects; • Illustrates the Project activities in preparation for first licensing in France, and also a wider international view via the ASN led Joint Early Review of the NUWARD SMR design, including Finnish and Czech Republic regulators, recently joined by the Swedish, Polish and Dutch regulators; • Articulates the collaborative approach to design development from involvement with the Project partners (the Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Naval Group, TechnicAtome, Framatome and Tractebel) to the establishment of the International NUWARD Advisory Board (INAB), to gain greater international insight and advice; • Concludes with the focus on next steps into detailed design development, standardisation of the design and its simplification to enhance its commercial competitiveness in a context of further harmonisation of the nuclear safety and licensing requirements and aspirations.

Frequency-Tunable Bandpass Filter Design Using Active Inductor (능동 인덕터를 이용한 주파수 가변형 대역통과 필터 설계)

  • Lee, Seok-Jin;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3425-3430
    • /
    • 2013
  • The fast-growing market in wireless communications has led to the development of multi-standard mobile terminals. In this paper, a frequency-tunable active RC bandpass filter for multi-standards wireless communication system is designed using an active inductor. The conventional bandpass filter design methods employ the high order filter or high quality factor Q to improve the stopband attenuation characteristics and frequency selectivity of the passband. The proposed bandpass filter based on the high Q active inductor has an improved frequency characteristics. The center frequency and gain of the designed bandpass filter is tuned by employing the tuning circuit. We have performed the simulation using TSMC $0.18{\mu}m$ process parameter to analyze the characteristics of the designed active RC bandpass filter. The bandpass filter with Q=20.5 has 90MHz half power bandwidth at the center frequency of 1.86GHz. Moreover, the center frequency of the proposed bandpass filter can be tuned between 1.86~2.38GHz for the multi-standards wireless communication system using the capacitor of the tuning circuit.

Formation of Plasma Damage-Free ITO Thin Flims on the InGaN/GaN based LEDs by Using Advanced Sputtering

  • Park, Min Joo;Son, Kwang Jeong;Kwak, Joon Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.312-312
    • /
    • 2013
  • GaN based light emitting diodes (LEDs) are important devices that are being used extensively in our daily life. For example, these devices are used in traffic light lamps, outdoor full-color displays and backlight of liquid crystal display panels. To realize high-brightness GaN based LEDs for solid-state lighting applications, the development of p-type ohmic electrodes that have low contact resistivity, high optical transmittance and high refractive index is essential. To this effect, indiumtin oxide (ITO) have been investigated for LEDs. Among the transparent electrodes for LEDs, ITO has been one of the promising electrodes on p-GaN layers owing to its excellent properties in optical, electrical conductivity, substrate adhesion, hardness, and chemical inertness. Sputtering and e-beam evaporation techniques are the most commonly used deposition methods. Commonly, ITO films on p-GaN by sputtering have better transmittance and resistivity than ITO films on p-GaN by e-bam evaporation. However, ITO films on p-GaN by sputtering have higher specific contact resistance, it has been demonstrated that this is due to possible plasma damage on the p-GaN in the sputtering process. In this paper, we have investigated the advanced sputtering using plasma damage-free p-electrode. Prepared the ITO films on the GaN based LEDs by e-beam evaporation, normal sputtering and advanced sputtering. The ITO films on GaN based LEDs by sputtering showed better transmittance and sheets resistance than ITO films on the GaN based LEDs by e-beam evaporation. Finally, fabricated of GaN based LEDs by using advanced sputtering. And compared the electrical properties (measurement by using C-TLM) and structural properties (HR-TEM and FE-SEM) of ITO films on GaN based LEDs produced by e-beam evaporation, normal sputtering and advanced sputtering. As a result, It is expected to form plasma damage free-electrode, and better light output power and break down voltage than LEDs by e-beam evaporation and normal sputter.

  • PDF