• Title/Summary/Keyword: High Power Amplifiers

Search Result 198, Processing Time 0.026 seconds

MEMS TUNING ELEMENTS FOR MICRO/MILLIMETER-WAVE POWER AMPLIFIERS (마이크로/밀리미터파 대역에서 전력증폭기의 효율향상을 위한 MEMS 튜닝회로)

  • Kim, Jae-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.118-121
    • /
    • 2003
  • A new approach, using MEMS, for improving the performance of high efficiency amplifiers is proposed in this paper. The MEMS tuning element is described as a variable-length shorted CPW stub. Class-E amplifiers can be optimally tuned by these MEMS tuning elements because their operation varies with the impedance of the output tuning circuit. A MEMS tuning element was simulated using full-wave EM simulators to obtain its S-parameters. A Class-E amplifier with the MEMS was designed at 8GHz. The non-linear operation of this amplifier was simulated to explore the effect of the MEMS tuning. Comparing the initially designed amplifier without MEMS, the Power Added Efficiency (PAE) of the amplifier with MEMS is improved from 46.3% to 66.9%. For the amplifier with MEMS, the nonlinear simulation results are PAE = 66.90%, $\eta$(drain efficiency) = 75.89%, and $P_{out}$ = 23.37 dBm at 8 GHz. In this paper, the concept of the MEMS tuning element is successfully applied to the Class E amplifier designed with transmission lines.

  • PDF

Design of Hybrid Optical Amplifiers for High Capacity Optical Transmission

  • Kim, Seung-Kwan;Chang, Sun-Hyok;Han, Jin-Soo;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2002
  • This paper describes our design of a hybrid amplifier composed of a distributed Raman amplifier and erbium-doped fiber amplifiers for C- and L-bands. We characterize the distributed Raman amplifier by numerical simulation based on the experimentally measured Raman gain coefficient of an ordinary single mode fiber transmission line. In single channel amplification, the crosstalk caused by double Rayleigh scattering was independent of signal input power and simply given as a function of the Raman gain. The double Rayleigh scattering induced power penalty was less than 0.1 dB after 1000 km if the on-off Raman gain was below 21 dB. For multiple channel amplification, using commercially available pump laser diodes and fiber components, we determined and optimized the conditions of three-wavelength Raman pumping for an amplification bandwidth of 32 nm for C-band and 34 nm for L-band. After analyzing the conventional erbium-doped fiber amplifier analysis in C-band, we estimated the performance of the hybrid amplifier for long haul optical transmission. Compared with erbium-doped fiber amplifiers, the optical signal-to-noise ratio was calculated to be higher by more than 3 dB in the optical link using the designed hybrid amplifier.

  • PDF

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

A Study on the Transmission Length Limitation by Chromatic Dispersion in High Speed FOT스s (초고속 광파이버 전송시스템에서 색분산에 의한 전송거리 제한에 관한 연구)

  • 정은숙;김재평;정진호;김영권
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.18-29
    • /
    • 1993
  • In single mode fiber optic transmission systems(FOT's) operated at high modulation rates over long fiber spans, chromatic dispersion can produce distortion in the demodulated waveforms, resulting in intersymbol interference(ISI) in the received signal and a reduction of transmission system performance. In this paper, chromatic dispersion limitations for intensity modulation and direct detection(IM-DD) systems are studied by considering the effect of phase modulation to amplitude modulation (PM-AM) conversion noise. Laser phase noise conversion to amplitude noise due to fiber chromatic dispersion is analyzed by deriving the noise power spectral density. We first derive the noise power spectral density of the laser phase noise to intensity noise conver- sion. Next, also evaluate the system power penalty and the transmitter laser linewidth required to avoid PM-AM conversion noise penalties in long-haul nonregenerative transmission system using an external modulator and optical amplifiers. For such system with optical amplifiers, transmission sys- tem length is limited due to fiber chromatic dispersion, even if an ideal external modulator is used.

  • PDF

Q-band MMIC Driver and Power Amplifiers for Wideband wireless Multimedia (Q-band 광대역 무선 멀티미디어용 MMIC구동 및 전력증폭기)

  • 강동민;이진희;윤형섭;심재엽;이경호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.167-170
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) driver and power amplifiers for WLAN are presented using 0.2${\mu}{\textrm}{m}$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor(PHEMT). In each stage of the MMIC DA, a negative feedback is used for both broadband and good stability. The MMIC PA has employed a balanced configuration to overcome these difficulties and achieve high power with low VSWR over a wide frequency range. In the MMIC DA, the measurement results arc achieved as an input return loss under -4dB, an output return loss under -l0dB, a gain of 14dB, and a PldB of 17dB at C-band(36~ 44GHz). The chip size is 28mm$\times$1.3mm. The developed MMIC PA has the l0dB linear gain over 360Hz to 420Hz band and 22dBm PldB performance at 400Hz. The size of fabricated MMIC PA is 4mm x3mm. These results closely match with design results. This MMIC DA Sl PA will be used as the unit cells to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

An implementation of 60W X-band Cascade SSPA for Marine Radar System (선박 레이다용 60W X-band Cascade SSPA 구현)

  • Kim, Min-Soo;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, An X-band solid state power amplifier(SSPA) for pulse compressed microwave signal with 60Watt power and power added efficiency(PAE) above 30% is described. Designed 60Watt high power amplifier(HPA) was implemented by cascade coupled amplifiers, and it is consisted on three stage drive amplifiers with internally matched GaAs FET and one stage main power amplifier with an internally matched GaN HEMT. The designed SSPA has performance with more than total power gain 37dB and output power 48dBm(60-W) in condition of frequency range $9.41{\pm}0.03GHz$, pulse period width under 1ms and duty cycle under 10%. The implemented SSPA can apply to high quality digital marine radar applications with pulse compression technique.

CMOS Power Amplifier Using Mode Changeable Autotransformer (모드변환 가능한 단권변압기를 이용한 CMOS 전력증폭기)

  • Ryu, Hyunsik;Nam, Ilku;Lee, Dong-Ho;Lee, Ockgoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • In this paper, in order to improve efficiency performance of power amplifiers, a mode changeable autotransformer is proposed. Efficiency performance at the low-power mode can be improved by adopting the mode changeable autotransformer. A dual-mode autotransfomrer CMOS power amplifier using a standard 0.18-${\mu}m$ CMOS process is designed in this work. Number of turns in a primary winding is re-configurated according to mode change between the high-power mode and the low-power mode. Thus, the efficiency performance of the power amplifier at each mode is optimized. EM and total circuit simulation results verify that low-power mode power added efficiency(PAE) at 24dBm output power is improved from 10.4% to 26.1% using the proposed multi-mode operation.

Performance Analysis of Nonlinear Satellite Communication System in the CCI And ACI Interference Channel (간섭채널에서 비선형 위성 통신 시스템의 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.166-173
    • /
    • 2004
  • Satellite communication system uses a high non-linear HPA(high power amplifiers) in the earth station and satellite transponder. Therefore, it is important to consider the nonlinear effect of HPA on the communication system. In this paper, we find the variation of power spectrum density by nonlinearity HPA and the change of harmonic component according to IBO (input back-off). When the BPSK is used for satellite communication system, we analyze BER performance including the external co-channel interference (CCI) and the adjacent channel interference (ACI) resulting from the HPA nonlinearity. BER degrades as ACI magnitude grows up when the uplink SNR, uplink SIR (signal to co-channel interference power ratio) and downlink SIR are constant at some level. In case there is only non-linear HPA in the satellite, it is shown that BER considerably depends on the ACI magnitude ACI. When there are two non-linear HPAs in the both earth station and satellite, much BER degradation results from the CCI and ACI.

An Analysis of Wideband and High Efficiency Class-J Power Amplifier for Multiband RRH (다중대역 RRH를 위한 Class-J 전력증폭기의 광대역과 고효율 특성분석)

  • Choi, Sang-Il;Lee, Sang-Rok;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • Until recently, power amplifiers using LDMOS were Class-AB and Doherty type, and showed 55 % efficiency for narrowband of 60 MHz bandwidth. However, owing to the RRH application of base stations power amplifier module, a bandwidth expansion of at least 100 MHz and high efficiency power amplifiers of at least 60 % power efficiency are required. In this study, a Class-J power amplifier was designed by optimizing an output matching circuit so that the second harmonic load will contain a pure reactance element only and have broadband characteristics by using GaN HEMT. The measurements showed that a 45 W Class-J power amplifier with a power added efficiency of 60~75 % was achieved when continuous wave signals were input at 1.6~2.3 GHz, including W-CDMA application.

Multi-Stage CMOS OTA Frequency Compensation: Genetic algorithm approach

  • Mohammad Ali Bandari;Mohammad Bagher Tavakoli;Farbod Setoudeh;Massoud Dousti
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.690-703
    • /
    • 2023
  • Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 ㎛. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 ㎼.