• Title/Summary/Keyword: High Order Circuit Model

Search Result 86, Processing Time 0.024 seconds

Pressure Control of Lockup Solenoid Valve for Automatic Transmission (자동변속기 록업솔레노이드밸브의 압력제어)

  • Park, Kwan-su-;Chung, Soon-Bae;Lee, Kyo-Il-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.472-477
    • /
    • 1994
  • The lockup clutch is embeded on torque converter of automatic transmission to prevent the efficiency deterioration of torque converter in high speed. For improving fuel consumption rate, it is desirable to engage the lockup clutch earlier. But, it results in degrading shift quality, due to the transient torque. The transient clutch pressure which affects the shifting quality, should be controlled properly. In this study, to solve the problem, it is analysed the hydraulic circuit of lockup system including line pressure regulating circuit, established the nonlinear model, and designed the PID controller. The line pressure is supplied to the lockup clutch through the lockup control valve by switching the lockup solenoid valve on. In order to control the transient pressure actively, it is needed to control the lockup solenoid valve by closed loop control. The lockup solenoid valve is 2-way on-off valve, and is adequate for PWM control. To reduce the pressure chattering, the carrier frequency is increased. Target pressure profile is computed from optimized velocity difference profile throuth dynamic equation of vehicle system.

  • PDF

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

High-mobility Ambipolar ZnO-graphene Hybrid Thin Film Transistors

  • Song, U-Seok;Gwon, Sun-Yeol;Myeong, Seong;Jeong, Min-Uk;Kim, Seong-Jun;Min, Bok-Gi;Gang, Min-A;Kim, Seong-Ho;Im, Jong-Seon;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.164.2-164.2
    • /
    • 2014
  • In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of $329.7{\pm}16.9cm^2/V{\cdot}s$, and a high on-off ratio of $10^5$. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.

  • PDF

A Study on Low-Current-Operation of 850nm Oxide VCSELs Using a Large-Signal Circuit Model (대신호 등가회로 모델을 이용한 850nm Oxide VCSEL의 저전류 동작 특성 연구)

  • Jang, Min-Woo;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.10-21
    • /
    • 2006
  • We have studied the characteristics of oxide VCSELS when their off-current and on-current are kept small in order to find out the possibility of low current operation. A large signal equivalent circuit model has been used. By comparing measured data and simulation results, the parameters of the large signal models are obtained including the capacitances. Using the large signal model, we have investigated the effects of capacitance and on/off currents upon the turn-on/turn-off characteristics and eye diagram. According to the experiment and simulation, the depletion capacitance, which has been neglected, is found to have significant influence on the him-on delay and eye-diagram. Therefore, for high speed and low current operation, the reduction of the depletion capacitance is essential.

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

Multi-Secondary Transformer: A Modeling Technique for Simulation - II

  • Patel, A.;Singh, N.P.;Gupta, L.N.;Raval, B.;Oza, K.;Thakar, A.;Parmar, D.;Dhola, H.;Dave, R.;Gupta, V.;Gajjar, S.;Patel, P.J.;Baruah, U.K.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.78-82
    • /
    • 2014
  • Power Transformers with more than one secondary winding are not uncommon in industrial applications. But new classes of applications where very large number of independent secondaries are used are becoming popular in controlled converters for medium and high voltage applications. Cascade H-bridge medium voltage drives and Pulse Step Modulation (PSM) based high voltage power supplies are such applications. Regulated high voltage power supplies (Fig. 1) with 35-100 kV, 5-10 MW output range with very fast dynamics (${\mu}S$ order) uses such transformers. Such power supplies are widely used in fusion research. Here series connection of isolated voltage sources with conventional switching semiconductor devices is achieved by large number of separate transformers or by single unit of multi-secondary transformer. Naturally, a transformer having numbers of secondary windings (~40) on single core is the preferred solution due to space and cost considerations. For design and simulation analysis of such a power supply, the model of a multi-secondary transformer poses special problem to any circuit analysis software as many simulation softwares provide transformer models with limited number (3-6) of secondary windings. Multi-Secondary transformer models with 3 different schemes are available. A comparison of test results from a practical Multi-secondary transformer with a simulation model using magnetic component is found to describe the behavior closer to observed test results. Earlier models assumed magnetising inductance in a linear loss less core model although in actual it is saturable core made-up of CRGO steel laminations. This article discusses a more detailed representation of flux coupled magnetic model with saturable core properties to simulate actual transformers very close to its observed parameters in test and actual usage.

Simulation of Active Compensated Pulsed Alternator with a Laser Flashlamp Load Based on Simplified Model

  • Yuan, Pei;Yu, Kexun;Ye, Caiyong;Ren, Zhang'ao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • This paper presents a nontraditional laser power system in which an active compensated pulsed alternator (ACPA) drives a flashlamp directly without the use of capacitor groups. As a result, the volume of the laser system is decreased because of the high energy density of the ACPA. However, the difficulty in matching the output of the alternator with the laser flashlamp is a significant issue and needs to be well analyzed. In order to solve this problem, based on the theory for ACPA, the authors propose a simplified model for the system of ACPA with flashlamp load by the way of circuit simulation. The simulation results preliminarily illuminate how the performance of the ACPA laser power system is affected. Meanwhile, the simulation results can also supply a consultation for future ACPA laser power system design and control.

Design and Analysis of Characteristics of IPM type BLDC Motor for Low Voltage, High Current (저전압 대전류용 IPM type BLDC 전동기 설계 및 특성해석)

  • Yun, Keun-Young;Rhyu, Se-Hyun;Yang, Byoung-Yull;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.77-79
    • /
    • 2004
  • This paper presents a design and characteristics analysis of interior permanent magnet (IPM) type BLDC motor for electric vehicle. In order to design of IPM type BLDC motor, surface mounted permanent magnet(SPM) type BLDC motor is used as the initial design model. According to the size of permanent magnet, the steady state characteristics is analysized by equivalent magnetic circuit method. The characteristics analysis results of the designed motor is compared with the experimental results.

  • PDF

Pulsed-Power System for Leachate Treatment Applications

  • Jang, Sung-Roc;Ryoo, Hong-Je;Ok, Seung-Bok
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • This paper presents a water treatment system for leachate from sewage-filled ground that uses a pulsed-power modulator developed based on semiconductor switches in order to realize a long life, a high repetition rate, and a fast rising time. The specifications of the developed pulsed-power modulator are the pulsed output voltage, the output current, the pulse repetition rate (PRR), the pulse width, and an average output power of $60\;kV_{max}$, $300\;A_{max}$, 3000, $50\;{\mu}s$, and 15 kW, respectively. The pulsed-power water treatment system was introduced and analyzed using an equivalent electrical circuit model to optimize the output voltage waveform. The experimental results verify that the proposed water treatment system can be effectively used for industrial applications.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Lim, Seung-Bin;Choi, Jae-Hak;Park, Jae-Bum;Son, Yeoung-Gyu;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.