• Title/Summary/Keyword: High Melting Point Material

Search Result 104, Processing Time 0.026 seconds

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

Development of a Heat Regenerator Using High Temperature Phase Change Material : Part I Prediction of Heat Transfer Phenomena in a Single Module of Phase Change Material (초고온 상변화 물질을 이용한 열회수장치 개발:Part I 축열재 모듈의 열전달 현상 해석)

  • 박준규;서경원;김상진
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.258-267
    • /
    • 1993
  • A mathematical model has been developed to describe heat transfer phenomena in a PCM (phase change material) module for development of an energy recovery system. The PCM module, melting point of which is around 1673 K, consists of silicon(96.8%), aluminium(2.7%) and marginal amounts of impurities such as Ca, Fe and Ti. The module is covered by a capsule that consists of SiC(58%) and graphite(42%). Physical properties that are required for model predictions were cited from the references. The apparent capacity method and the postiterative method wert used in the mathematical model to describe the phase changing mechanism. Temperature and velocity of fluid are the major variables in the model calculation. For the gas temperature of 1773 K that simulates real operating conditions, the prediction shows that PCM is rapidly melted to axial direction. However, for the gas temperature of 3000 K that is higher than the real conditions, PCM is melted rapidly to the radial direction. The gas velocity has no influence on the melting phenomena of the PCM except when the gas velocity is relatively low. At the low gas velocity asymmetry of the temperature profiles in PCM is obtained.

  • PDF

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kyeongsang Basin, Korea: Possibility of Magma Heterogeneity (경상분지 백악기 화산암류에 대한 암석화학적 고찰: 이원성 마그마의 가능성)

  • Sung, Jong Gyu;Kim, Jin Seop;Lee, Joon Dong
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.249-264
    • /
    • 1998
  • The Creataceous volcanic rocks distributed in the southeastern part (Kyeongsang basin) of Korea peninsula are composed of basalt, basaltic andesite, andesite, dacite and rhyolite. The variation of major elements show that contents of MgO, CaO, $FeO^T$, $Al_2O_3$, $TiO_2$ and $P_2O_5$ decrease with increasing of $SiO_2$, but $K_2O$ contents are increased slightly, $Na_2O$ widely dispersed. We can show slightly inflection point and low frequency of dacites in range between 63-65 wt.% $SiO_2$, while continuous trend exit in variation diagram. Variation trends in Harker diagrams for the major, minor, trace and REEs suggest that the BAV (basaltic to andesitic volcanics) and DRV (dacitic to rhyolitic volcanics) are not related to a simple crystal fractionation process. In the regime of under 65 wt. % in silica content, fractionation of olivine and clinopyroxene is predominant, while that of plagioclase happens strongly higher than 65 wt.% (e.g., $SiO_2$, vs. Eu and Sr, MgO vs. $Al_2O_3$ and CaO). The latter means low-pressure fractional crystallization for DRV. On the discriminant diagram, DRV are located in more mature environment than BAV. The $(Ce/Sm)_N$ vs. CeN digram shows that these two classes cannot be related to crystal fractionation. If they had been produced by fractionation, although they plotted in a slightly elongate cluster along the same horizontal trend, DRV should lie to the right of these primitive compositions. These diagrams clearly rule out a simple fractionation throughout from BAV to DRV. BAV had been influenced greatly subductiong slab as shown by K/Yb vs. Ta/Yb. We suggest that BAV primitive magma generated higher degree of partial melting than DRV primitive magma. LILE (K, Ba, $Rb{\pm}Th$) enriched characteristics as shown in BAV are inherited from subducting slab fluids and/or higher degree of partial melting of mantle material. However, lower degree of partial melting of mantle relative to BA V and contamination at high-level magma reservoir caused LILE enrichment to DRV.

  • PDF

Etching characteristics of gold thin films using inductively coupled Ar/$CF_4/Cl_2$ plasma (Ar/$CF_4/Cl_2$ 유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • Kim, Nam-Kyu;Chang, Yun-Seong;Kim, Dong-Pyo;Kim, Chang-Il;Chang, Eui-Goo;Lee, Byeong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.190-194
    • /
    • 2002
  • In this study, the etching of Au thin films have been performed in an inductively coupled CF4/Cl2/Ar plasma. The etch properties were measured as the CF4 adds from 0 % to 30 % to the Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. Other parameters were fixed at a rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of $30^{\circ}C$. The highest etch rate of the Au thin film was 370 nm/min at a 10 % additive CF4 into Cl2/(Cl2 + Ar) gas mixing ratio of 0.2. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. From x-ray photoelectron spectroscopy (XPS) analysis, the intensities of Au peaks are changed. There is a chemical reaction between Cl and Au. Au-Cl is hard to remove on the surface because of its high melting point and the etching products can be sputtered by Ar ion bombardment. We obtained the cleaned and steep profile.

  • PDF

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

The Effect of Deposition Parameters on the Morphology of KLN Thin Films (증착 조건이 KLN 박막의 형상에 미치는 영향)

  • Park, Seong-Geun;Jeon, Byeong-Eok;Kim, Jin-Su;Kim, Ji-Hyeon;Choe, Byeong-Jin;Nam, Gi-Hong;Ryu, Gi-Hong;Kim, Gi-Wan
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • The growth characteristics of 4-fold grain which was appeared in KLN deposition on $Pt/Ti/SiO_2/Si(100)$ substrate was studied by varying process variables. Substrate temperature, sputtering pressure, rf power were selected as process variables, and experiment was carried out near optimum fabrication condition. When using K and Li enriched target, the optimum fabrication conditions were substrate temperature of $600^{\circ}C$, sputtering pressure of 150mTorr, rf power of 100 W and its surface morphology is sensitively varied by small deposition condition changes. KLN is composed of elements which have large difference of boiling point. And it is difficult to fabricate thin film at high temperature and high vacuum deposition condition. Furthermore the phenomenon during deposition process can not be explained by using Thorton's model which explains the relation between thin film structure and melting point of thin film materials. These phenomenon can be explained using boiling point of elements which consist of thin film material.

  • PDF

Study on Manufacture of Tantalum Powder from Tantalum Scrap using Hydride-Dehydride Process (HDH Process) (수소화-탈수소화법을 이용한 탄탈륨 스크랩으로부터 탄탈륨 분말 제조 연구)

  • Lee, Ji-eun;Lee, Chan Gi;Park, Ji Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.30-37
    • /
    • 2018
  • For recylcing of high purity tantalum (Ta) scrap, We investigated manufacture of tantalum powder using hydride-dehydride (HDH) process. Tantalum had excellent properties such as ductile, hardness and high melting point. Usually these properties made difficult to make a powder. In this study, Tantalum powder was manufactured using Tantalum hydride via hydridation. Tantalum hydride was formed at $500^{\circ}C$, 5 hr/$700^{\circ}C$, 3 hr and it is easy to make a tantalum hydride powder because hydrogen in the tantalum act as a defect dislocation and lattice expansion. The powder was pulverized to a size of less than $10{\mu}m$ under a condition of 1300 rpm, 30 min using a ring mill, and tantalum powder with less than 50 ppm hydrogen was prepared through dehydridation in an Ar and low vacuum atmosphere.

Analysis of Friction Stir Welding Process of Mg alloy by Computational Fluid Dynamics (유동 해석을 통한 마그네슘 합금의 마찰교반용접 분석 연구)

  • Kim, Moosun;Sun, Seung-Ju;Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.679-684
    • /
    • 2017
  • Friction Stir Welding is a metal welding technique, in which friction heat between a welding tool and a welding material is used to weld parts at temperatures below the melting point of a material. In this study, the temperature and velocity changes in a magnesium alloy (AZ31) during the welding process were analyzed by computational flow dynamics technique while welding the material using a friction stir welding technique. For the analysis, the modeling and analysis were carried out using Fluent as a fluid analysis tool. First, the welding material was assumed to be a temperature-dependent Newtonian fluid with high viscosity, and the rotation region and the stationary region were simulated separately to consider the rotational flow generated by the rotation of the welding tool having a helical groove. The interface between the welding tool and welding material was given the friction and slip boundary conditions and the heat transfer effect to the welding tool was considered. Overall, the velocity and temperature characteristics of the welded material according to time can be understood from the results of transient analysis through the above flow analysis modeling.