• Title/Summary/Keyword: High Impact Weather

Search Result 203, Processing Time 0.024 seconds

Improvement of Automatic Present Weather Observation with In Situ Visibility and Humidity Measurements (시정과 습도 관측자료를 이용한 자동 현천 관측 정확도 향상 연구)

  • Lee, Yoon-Sang;Choi, Reno Kyu-Young;Kim, Ki-Hoon;Park, Sung-Hwa;Nam, Ho-Jin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.439-450
    • /
    • 2019
  • Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer's own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.

A Study on Improvement of High Resolution Regional NWP by Applying Ocean Mixed Layer Model (해양혼합층 모델 적용을 통한 고해상도 지역예측모델 성능개선에 대한 연구)

  • Min, Jae-Sik;Jee, Joon-Bum;Jang, Min;Park, Jeong-Gyun
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.317-329
    • /
    • 2017
  • Ocean mixed layer (OML) depth affects diurnal cycle of sea surface temperature (SST) induced by change of solar radiation absorption and heat budget in ocean. The diurnal SST variation can lead to convection over the ocean, which can impact on localized precipitation both over coastal and inland. In this study, we investigate the OML characteristics affecting the diurnal cycle of SST for the Korean Peninsula and surrounding areas. To analyze OML characteristics, HYCOM oceanic mixed layer depth (MLD) and wind field at 10 m from ERA-interim during 2008~2016 are used. In the winter, MLD is deeply formed when the strong wind field is located on perpendicular to continental slope over deep seafloor areas. Besides, cooling SST-induced vertical mixing in OML is reinforced by dry cold air originated from Siberia. The OML in summer is shallowly distributed about 20 m. In order to estimate the impact of OML model in high resolution NWP model, four experimental simulations are performed. At this time, the prognostic scheme of skin SST is applied in NWP to simulate diurnal SST. The simulation results show that CNTL (off-OML) overestimates diurnal cycle of SST, while EXPs (on-OML) indicate similar results to observations. The prediction performance for precipitation of EXPs shows improvement compared with CNTL over coastal as well as inland. This results suggest that the application of the OML model in summer season can contribute to improving the prediction for performance of SST and precipitation over coastal area and inland.

A Study of the Blocking and Ridge over the Western North Pacific in Winter and its Impact on Cold Surge on the Korean Peninsula (겨울철 북서 태평양에서 발생하는 고위도 블로킹과 중앙 태평양 기압능이 한반도 한파에 미치는 영향 연구)

  • Keon-Hee Cho;Eun-Hee Lee;Baek-Min Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Blocking refers to a class of weather phenomena appearing in the mid and high latitudes, whose characteristics are blocked airflow of persistence. Frequently found over the Pacific and Atlantic regions of the Northern Hemisphere, blocking affects severe weather in the surrounding areas with different mechanisms depending on the type of blocking patterns. Along with lots of studies about persistent weather extremes focusing on the specific types of blocking, a new categorization using Rossby wave breaking has emerged. This study aims to apply this concept to the classification of blockings over the Pacific and examine how different wave breakings specify the associated cold weather in the Korean peninsula. At the same time, we investigate a strongly developing ridge around the Pacific by designing a new detection algorithm, where a reversal method is modified to distinguish ridge-type blocking patterns. As result, Kamchatka blocking (KB) and strong ridge over the Central Pacific are observed the most frequently during 20 years (2001~2020) of the studied period, and anomalous low pressures with cold air over the Korean Peninsula are accompanied by blocking events. When it considers the Rossby wave breaking, cyclonic wave-breaking is dominant in KB, which generates low-pressure anomalies over the Korean Peninsula. However, KB with anticyclone wave breaking appears with the high-pressure anomalies over the Korean Peninsula and it generates the warm temperature anomaly. Lastly, the low-pressure anomalies are also generated by the strong ridge over the Central Pacific, which persists for approximately three days and give a significant impact on cold surge on the Korean Peninsula.

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS) (대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향)

  • Kim, So-Young;Chun, Hye-Yeong;Park, Byoung-Kwon;Lee, Hae-Jin
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula (한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석)

  • Kim, SeHyun;Kim, Hyun Mee;Kim, Eun-Jung;Shin, Hyun-Cheol
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

A Study of the Characteristics of Heavy Rainfall in Seoul with the Classification of Atmospheric Vertical Structures (대기연직구조 분류에 따른 서울지역 강한 강수 특성 연구)

  • Nam, Hyoung-Gu;Guo, Jianping;Kim, Hyun-Uk;Jeong, Jonghyeok;Kim, Baek-Jo;Shim, Jae-Kwan;Kim, Byung-Gon
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.572-583
    • /
    • 2019
  • In this study, the atmospheric vertical structure (AVS) associated with summertime (June, July, and August) heavy rainfall in Seoul was classified into three patterns (Loaded Gun: L, Inverted V: IV, and Thin Tube: TT) using rawinsonde soundings launched at Osan from 2009 to 2018. The characteristics of classified AVS and precipitation property were analyzed. Occurrence frequencies in each type were 34.7% (TT-type), 20.4% (IV-type), 20.4% (LG-type), and 24.5% (Other-type), respectively. The mean value of Convective Available Potential Energy (1131.1 J kg-1) for LG-types and Storm Relative Helicity (357.6 ㎡s-2) for TT-types was about 2 times higher than that of other types, which seems to be the difference in the mechanism of convection at the low level atmosphere. The composited synoptic fields in all cases showed a pattern that warm and humid southwesterly wind flows into the Korean Peninsula. In the cases of TT-type, the low pressure center (at 850 hPa) was followed by the trough in upper-level (at 500 hPa) as the typical pattern of a low pressure deepening. The TT-type was strongly influenced by the low level jet (at 850 hPa), showing a pattern of connecting the upper- and low-level jets. The result of analysis indicated that precipitation was intensified in the first half of all types. IV-type precipitation induced by thermal instability tended to last for a short term period with strong precipitation intensity, while TT-type by mechanical instability showed weak precipitation over a long term period.

Pilot Study of Application Status for the Improvement of Weather Information in the Korean Peninsula: Focus on Extreme Heat Watch and Warnings

  • Park, Jong-Kil;Jung, Woo-Sik;Oh, Jina;Kim, Eun-Byul;Choi, Su-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.140-153
    • /
    • 2014
  • The extreme heat watch and warnings (EHWW) which is constructed as a part of the climate change adaptation took effect in the summer of 2008, but active response actions failed to be taken because of low perception among citizens. Therefore, a survey investigation targeting citizens residing in Busan and the Gyeongnam province was conducted in order to know the perception regarding EHWW issued by the Korea Meteorological Administration, to identify the main media through which information is acquired, and to propose an improvement measures which may enhance the usefulness and the degree of satisfaction of weather information. The results are as follows; The perception regarding EHWW was not very high as it remained at 59.8% in terms of percentile. Although the statistical significance was not fulfilled in the categories of gender or occupation, significant differences did exist among age groups. The main medium through which citizens acquired information regarding EHWW was the television, which was followed in order by the internet, acquaintances, short message service (SMS), radio, newspapers, the 131 weather hotline, and other media. The usefulness of EHWW was somewhat high (67.2%), and female students were found to utilize the information to a higher degree than male students. The statistics on the level of satisfaction regarding the weather information (65.4%) revealed that most respondents were satisfied. Housewives, professional, and the elder age groups exhibited great satisfaction, leading to the conclusions that the level of perception and interest regarding to the special weather reports (SWR) have an impact on satisfaction of SWR.