• 제목/요약/키워드: High Harmonic Rejection

검색결과 18건 처리시간 0.018초

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

광대역 고조파 제거용 고온초전도 저역통과 필터의 설계 (A Design of High Temperature Superconducting Low-Pass Filter for Broad-Band Harmonic Rejection)

  • 곽민환;김상현;안달;한석길;강광용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.78-81
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method Ins a cutoff frequency of 0.9 GHz with a 0.01 dB ripple level. The coupled line type low-pass filter with stripline configuration was fabricated by using a high-temperature superconducting (HTS ; $YBa_2Cu_3O_{7-x}$) thin film on MgO(100) substrate. Since the HTS coupled line type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 62 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency Bemuse of good rejection of the spurious signals and harmonics, our low-pass filter is applicable to mobile base station systems such as cellular, personal communication systems and international mobile telecommunication(IMT)-2000 systems.

  • PDF

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.

광대역 고조파 제거를 위한 고온초전도 저역통과필터의 제작 (Fabrication of high-temperature superconducting low-pass filter for broad-band harmonic rejection)

  • 한석길;강광용;안달;서준석;최춘근;김상현;곽민환
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.193-196
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band. The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method has a cutoff frequency of 0.9 CHz with a 0.01 dB ripple level. The coupled line type low-pass filter with strip line configuration was fabricated by using a high-temperature superconducting (HTS : YBa$_2$Cu$_3$O$_{7-{\delta}}$ thin film on MgO(100) substrate. Since the HTS coupled tine type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 6.2 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency.

  • PDF

저위상잡음을 갖는 X-band용 위상고정 유전체 공진 발진기의 설계 및 제작 (Design of Phase Locked Dielectric Resonator Oscillator with Low Phase Noise for X-band)

  • 류근관
    • 한국정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.34-40
    • /
    • 2004
  • 본 논문에서는 X-band용 저위상잡음을 갖는 위상고정 유전체 공진 발진기를 설계 및 제작하였다. 위상고정 유전체 공진 발진기의 루프대역 내의 위상잡음을 개선하기 위해서 샘플링위상비교기(Sampling Phase Detector)를 사용하여 전압제어 유전체 공진 발진기를 고안정의 기준주파수에 위상 고정시켰으며 루프대역 밖의 위상잡음을 개선하기 위해서 고임피던스 변환기를 이용한 낮은 위상잡음의 전압제어 발진기를 설계하였다. 제작된 위상고정 유전체 공진 발진기는 51.67㏈c의 고조파 억압특성을 가지고 있으며 공급전력은 1.95W 이하를 필요로 한다. 위상잡음은 상온에서 -107.17㏈c/Hz $\circleda$10KHz와 -113.0㏈c/Hz $\circleda$100KHz의 우수한 특성을 나타내었으며 출력전력은 $-20 ∼ +70^{\circ}C$의 온도 범위에서 13.0㏈m${\pm}$0.33㏈의 안정된 특성을 나타내었다.

Ka-band 위성 중계기용 저위상잡음 국부발진기의 설계 및 제작 (Design of Local Oscillator with Low Phase Noise for Ka-band Satellite Transponder)

  • 류근관;이문규;염인복;이성팔
    • 한국전자파학회논문지
    • /
    • 제13권6호
    • /
    • pp.552-559
    • /
    • 2002
  • 본 논문에서 는 Ka-band 위 성 중계 기용 국부발진기 의 EM(Engineering Model)을 설계 및 제작하였다. 루프 대역 밖의 위상잡음을 개선하기 위해서 고임피던스 변환기를 이용한 낮은 위상잡음의 전압제어 발진기를 설계하고 샘플링위상비교기(Sampling Phase Detector)를 사용하여 전압제어 발진기를 고안정의 OCXO(Oven Controlled Crystal Oscillator)에 위상 고정시킴으로써 루프 대역 내의 위상잡음을 개선하였다. 개발된 국부발진기는 43.83 dBc 이상의 고조파 억압특성을 가지고 있으며 공급전력은 15 V, 160 mA를 필요로 한다. 위상잡음은 -102.5 dBc/Hz @10 KHz와 -104.0 dBc/Hz @100 KHz의 특성을 나타내며 출력전력은 -20 - +7$0^{\circ}C$의 온도 범위에서 13.50 dBm$\pm$0.33 dB의 특성을 얻었다.

Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

  • Han, Yang;Shen, Pan;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.297-309
    • /
    • 2016
  • Grid-connected inverters (GCIs) with an LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion is amplified significantly under highly distorted grid conditions. This paper proposes a synchronous reference frame equivalent proportional-integral (SRF-EPI) controller in the αβ stationary frame using the parallel virtual resistance-based active damping (PVR-AD) strategy for grid-interfaced distributed generation (DG) systems to suppress LCL resonance. Although both a proportional-resonant (PR) controller in the αβ stationary frame and a PI controller in the dq synchronous frame achieve zero steady-state error, the amplitude- and phase-frequency characteristics differ greatly from each other except for the reference tracking at the fundamental frequency. Therefore, an accurate SRF-EPI controller in the αβ stationary frame is established to achieve precise tracking accuracy. Moreover, the robustness, the harmonic rejection capability, and the influence of the control delay are investigated by the Nyquist stability criterion when the PVR-based AD method is adopted. Furthermore, grid voltage feed-forward and multiple PR controllers are integrated into the current loop to mitigate the current distortion introduced by the grid background distortion. In addition, the parameters design guidelines are presented to show the effectiveness of the proposed strategy. Finally, simulation and experimental results are provided to validate the feasibility of the proposed control approach.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.