• 제목/요약/키워드: High Hardened Steel

검색결과 116건 처리시간 0.023초

볼엔드밀을 이용한 고속가공에서 가공환경 변화에 따른 열특성 평가 (Evaluation of thermal characteristics by cutting environments in high speed ball end-milling)

  • 이채문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.34-38
    • /
    • 2000
  • The trend of cutting process today goes toward higher precision and higher efficiency. Many thermal/frictional troubles occur in high-speed machining of die and mold steels.In this paper, the thermal characteristics are evaluated in high sped ball end-milling of hardened steel(HRc42). Experimental work is performed on the effect of cutting environments on tool life and cutting temperature. Cutting environments involve dry, wet(20bar), compressed chilly air at -9$^{\circ}C$, compressed chilly air at -35$^{\circ}C$. The measuring technique of cutting temperature using implanted thermocouple is used. The cutting temperature is about 79$0^{\circ}C$, 35$0^{\circ}C$ and 54$0^{\circ}C$ in dry, wet and compressed chilly air at +9$^{\circ}C$, respectively. The tool life for compressed chilly air at -9$^{\circ}C$ is longer than all other cutting environments in experiment.

  • PDF

저탄소강에서 Planetary 볼밀링에 의한 나노결정 페라이트의 형성 (Formation of Nanocrystalline Ferrite by Planetary Ball Milling in a Low Carbon Steel)

  • 이혜정;이상우;오명훈
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.29-40
    • /
    • 2005
  • Formation of nanocrystalline ferrite was investigated using milled powders obtained by planetary ball milling of chips, which were made by high speed mechanical cutting of a low carbon steel(0.15%C-1.1%Mn-0.01%Ti). After 4 hour milling the chips were changed to powders of $50{\mu}m$ in average size, and with increasing milling time the powders were refined to about $3{\mu}m$ for 128 hour and showed more equiaxed shapes. Nanocrystalline(nc) region appeared in the surfaces of powders milled for 1 hour, and the 4 hour milled powders were almost filled with nc region. Hardness of nc region was much higher than that of work-hardened(WH) region. With increasing milling time, ferrite and cementite in pearlite were severely deformed and lamellar spacing was decreased, and then cementites began to disappear after 4 hour milling due to dissolution into ferrite. Deformation bands formed in lightly work-hardened region showed large width and similar crystallographic orientations. Spacing of deformation bands was decreased with deformation and the layered microstructure consisting of narrow deformation bands subdivided into variously oriented small grains was formed by more deformation, and eventually this structure seemed to be evolved to the nc structure by further deformation. It is also conjectured the growth of nc ferrite grains occurred through the coalescence of nanocrystalline ferrites rather than the nucleation and growth of recrystallized grains.

용융염 침적법에 의한 VC Coating 금형강의 인성에 관한 연구 (A Study on the Toughness of Die Steel Coated with VC (vanadium carbide) by Immersing in Molten Borax Bath)

  • 이병권;남태운
    • 열처리공학회지
    • /
    • 제6권2호
    • /
    • pp.59-69
    • /
    • 1993
  • Bending fracture strength test and impact strength test were made for VC coated die steels treated by immersing in molten borax bath and for hardened steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$. The material used in this investigation was representative cold and hot work die steels STD11, STD61. The results obtained are as follows. 1) The bending fracture strength of VC coated die steel (STD11, STD61) was lessened with increasing the thickness of the VC coated layer. 2) With increasing the immersing time (imcreasing the thickness of the VC coated layer) the maximum hardness was obtained at 480 minutes holding, after that holding time hardness was decreased. 3) The impact strength of the VC coated die steel was not decreased. In the casse of STD11, it was higher than that of the quenched condition especially at low tempering temperature, and vice versa at high tempering temperature. However in the case of STD61 shows the result to the contrary.

  • PDF

DEVELOPMENT OF HYPER INTERFACIAL BONDING TECHNIQUE FOR ULTRA-FONE GRAINED STEELS

  • Kazutoshi Nishimoto;Kazuyoshi Saida;Jeong, Bo-young;Kohriyama, Shin-ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.776-780
    • /
    • 2002
  • This paper describes the concept and the characteristics of hyper interfacial bonding developed as a new concept joining process for UFG (ultra-fine grained) steel. Hyper interfacial bonding process is characterized by instantaneous surface melting bonding which involves a series of steps, namely, surface heating by high frequency induction, the rapid removing of heating coil and joining by pressing specimens. UFG steels used in this study have the average grain size of 1.25 ${\mu}{\textrm}{m}$. The surface of specimen can be rapidly heated up and melted within 0.2s. Temperature gradient near heated surface is relatively steep, and peak temperature drastically fell down to about 1100K at the depth of 2~3mm away from the heated surface of specimen. Bainite is observed near bond interface, and also M-A (martensite-austenite) islands are observed in HAZ. Grain size increases with increasing heating power, however, the grain size in bonded zone can be restrained under 11 ${\mu}{\textrm}{m}$. Hardened zone is limited to near bond interface, and the maximum hardness is Hv350~Hv390.

  • PDF

SM45C의 레이저 표면경화특성 (Laser surface hardening characterization of SM45C)

  • 신호준;유영태;안동규;임기건
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.246-251
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

고주파표면 경화 처리된 0.45% 탄소강의 템퍼링 거동 (Tempering Behavior of 0.45% Carbon Steel Treated by a High Frequency Induction Hardening Technique)

  • 심재진;이상윤
    • 열처리공학회지
    • /
    • 제3권2호
    • /
    • pp.10-19
    • /
    • 1990
  • The tempering behavoirs of 0.45% carbon steel treated by automatic progressive high frequency induction hardening equipment have been investigated. In order to examine the correlation of hardness with both tempering temperature and time, simple regression analysis has been made using the statistical quality control package. The maximum surface hardness value of induction hardened zone and its effective hardening depth have been determined to be Hv 810 and 0.76mm, respectively. The hardness obtained after tempering has been shown to vary lineary with tempering time at six different temperatures. The activation energies during tempering have been calculated to be 25.34kcal/mole, 32.73kcal/mole and 49.24kcal/mole for HRcs 60, 50 and 40, respectively, showing that tempering process occurs by a complex mechanism, The tempering hardness equation of $H=90.113{\sim}4.531{\times}10^{-3}$ [T(11.996+log t)] has proved to be in a reasonably good agreement with experimently determined data and it is also expected to be useful for the determination of tempering treatment conditions to obtain a required hardness value.

  • PDF

마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동 (Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel)

  • 송명훈;이재갑;김용석
    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.62-68
    • /
    • 2000
  • Reactive DC magnetron sputtering 법으로 AISI 304 스테인레스강 기판 위에 TiN 극박막을 50nm∼700nm 두께로 증착한 후, 경화된 AISI 52100 강과 알루미나를 마모 상대재로 하여 박막의 미끄럼마모 시험을 상온 대기 중에서 행하고, 마모 상대재에 따른 TiN 극박막의 마찰과 마모 거동을 연구하였다. AISI 52100 강구를 마모 상대재로 한 경우, TiN 박막은 200g 이하의 마모 하중과 0.035m/sec의 낮은 미끄럼 속도 조건에서 500nm 내외의 극박으로도 마찰계수가 0.1 내외로 유지되는 우수한 내마모성을 보였다. 이같이 우수한 내마모성은 AISI 52100 강으로부터 천이된 Fe가 산화되어 TiN 박막 표면에 Fe 산화층을 형성한 때문으로 설명되었다. 그러나, 마모 상대재를 알루미나 볼로 한 경우에는 TiN 박막 위에 산화층이 형성되지 않고, 마모가 거의 되지 않는 알루미나 볼과 박막층 사이에 국부적 응력집중 등이 발생하여 시험된 전 조건 하에서 박막층의 박리 현상이 관찰되었고 높은 마찰계수가 측정되었다. 또한 기판의 평균 표면조도, Ra가 박막의 두께와 유사할 때 마찰계수가 급격히 상승하는 현상이 관찰되었다.

  • PDF

Permanent Shotcrete Tunnel Lining 구축을 위한 고성능 숏크리트 개발( I : 고강도 숏크리트 개발을 위한 새로운 급결제 적용) (Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Lining(I : Application of New Type Accelerator for High Strength Shotcrete))

  • 박해균;이명섭;김재권;안병제
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.1023-1030
    • /
    • 2002
  • From the early 1980s, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate accelerator (waterglass) was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength and equivalent flexural strength were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

리브가공용 롱엔드밀의 경사면 가공시 표면형상 및 조도 (Surface Texture and Roughness of inclined surface milled by Long neck ball endmill)

  • 양진석;정태성;김영근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.565-566
    • /
    • 2006
  • High speed machining experiment on the inclined surfaces of hardened mold steel(STAVAX at hardness HRC 53) is carried out using the long-neck type ball endmill. Surface texture and roughness are compared fur various cutting conditions. Tool overhang length greatly affects the roughness of machined surface. It is found that, fur this type of long-neck endmill, the chip load should be carefully selected by reducing either the axial depth of cut or feedrate to avoid tool vibration. Feedrate adjustment is more appropriate method in terms of tool wear.

  • PDF

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.