• Title/Summary/Keyword: High Frequency Heating

Search Result 402, Processing Time 0.046 seconds

Melting of Al2O3 powder using the skull melting method (Skull melting법에 의한 Al2O3 파우더 용융)

  • Choi, Hyun-Min;Kim, Young-Chool;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.24-31
    • /
    • 2019
  • The current study demonstrates an efficient procedure to create ingots from $Al_2O_3$ powder using the skull melting method to use these ingots as a starting material in conventional methods for growing synthetic single-crystal sapphire. Dimension of the cold crucible was 24 cm in inner diameter and 30 cm in inner height, 15 kg of $Al_2O_3$ powder was completely melted within 1 h at an oscillation frequency of 2.75 MHz, maintained in the molten state for 3 h, and finally air-cooled. The areal density and components of the cooled ingot by parts were analyzed through scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The areal density and $Al_2O_3$ content of the ingot were related to the temperature distribution inside the cold crucible during high-frequency induction heating, and the area with high temperature was high tends to be high in areal density and purity.

Quality Evaluation of the High-purity Limestones for Lime Manufacturing Based on the Measurements of Shape Factor and Grain Boundary Frequency (형상계수 및 경계빈도수 측정에 의거한 생석회 제조용 고품위석회석의 품질 평가)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-383
    • /
    • 2009
  • Crystallinity and textural relations, which are crucial in terms of the quality concept of high-purity limestone, have not been effectively applicable to the limestone evaluation as crude ore due to the difficulties in precise measurements. To overcome the above, as a new method of ore characterization, a measurement of shape factor and grain boundary frequency utilizing the image analysing system was adopted in this study. Some domestic limestones used for lime manufacturing were investigated by such a quality evaluation method, and its results are discussed and correlated each other samples. As the result, even though calcite contents of crude ore, i.e., limestone grade and its crystal size are similar, quality of manufactured lime is remarkably different depending on the degree of shape factor and grain boundary frequency. In other words, as the more irregular in crystal shape and the higher the grain boundary frequency, the manufactured quick lime became more superior in all terms of lime quality such as rate of calcination, porosity, reactivity, sintering and decrepitation effect. However, because the quick lime become easily overheated in case of relatively higher degree in shape factor and grain boundary effect, a technology minimizing heating time is necessary for the manufacturing of high quality lime. In limestone industry, such a ore characterization method will be much more reasonable than the conventional method by measurement of mean size, because the method may collectively comprise crystal shape and other textural factors which can not be numerically evaluated in the past.

Characteristics of New PWM High Frequency Inverter Applied to Induction Heating (유도 가열에 적용되는 새로운 PWM 고주파 인버터의 특성)

  • Ryu, Yeoi-Joung;Lee, Sang-Wook;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.63-69
    • /
    • 2018
  • In this paper, the operation principle of a bi-directional switch type resonant AC link snubber circuit was described, together with the practical design procedure, which employs in the proposed power module bridge package type resonant AC link snubber. The novel prototype of power module bridge package type resonant AC link snubber-assisted voltage type sinewave soft switching PWM inverter using IGBT power module was demonstrated herein. It was verified that both the auxiliary power switches in this resonant AC link snubber circuit and the main power switches commutate under the condition of soft switching commutation principle. In addition, the power losses of the new soft switching inverter treated here were analyzed by implementing the experimental data of the IGBT and diode v-i characteristics in addition to switching power loss characteristics into our original computer simulation software developed by the authors. Then, the voltage type sinewave soft switching PWM inverter was high efficiency than that of hard switching PWM inverter, along with performance operation waveforms. In the future, the comparative feasibility study of power module bridge type resonant AC link snubber and its related soft switching inverter in addition to the other types resonant snubber assisted soft switching inverter should be done from a practical point of view.

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization (고온, 고압에서의 요오드 치환 Polycarbosilane의 합성 및 특성)

  • Byen, Ji Cheol;Sharbidre, Rakesh Sadanand;Kim, Yoon Ho;Park, Seung Min;Ko, Myeong Seok;Min, Hyo Jin;Lee, Na young;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.489-494
    • /
    • 2020
  • SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.

A High Efficient Half-Bridge Inverter for Induction-Heating Applications with Non-Magnetic Load (비자성 부하 유도 가열용 Half-Bridge Inverter의 효율 향상에 대한 연구)

  • Jung, Jin-Woo;Lee, Byoung-Kuk;Suh, Bum-Seok;Hyun, Dong-Seok;Jung, Yun-Cheol;Park, Byoung-Wook;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.303-305
    • /
    • 1996
  • A strategy that can maximize the efficiency of the inverter system for the non-magnetic material is proposed. Frequency control and variable DC-Link voltage control are compared and analyzed by the experimental results. The experimental results show the variable DC-Link voltage control is superior to the frequency control with respect to improve the efficiency of the inverter system. MOSFETs and IGBTs are used as switching devices and IGBTs are considerable as better switching devices for improving the efficiency of the inverter system.

  • PDF

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

A Study on Emission Characteristics of Ar Gas Using a Single Langmuir Probe Method in Radio-Frequency Inductively Coupled Plasma (13.56MHz ICP에서 단일 탐침법에 의한 Ar 가스의 발광특성 연구)

  • Jo, Ju-Ung;Choi, Yong-Sung;Kim, Yong-Kab;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.611-615
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, Electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The electrodeless fluorescent lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. Therefore, the electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours. In this paper, electron temperature and electron density were measured in a radio-frequency inductively coupled plasma using a Langmuir probe method for emission characteristics. Measurement was conducted in an argon discharge for pressure from 10 [mTorr] and input RF power 100 [W] to 150 [W]. As for the electron density, a electron temperature was more distinguished for a emission characteristic. The results of ideal may contribute to systematic understanding of a electrodeless fluorescent lamps of emission characteristics.

  • PDF

A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC (염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구)

  • Kim, Hee-Je;Kim, Yong-Chul;Choi, Jin-Young;Kim, Ho-Sung;Lee, Dong-Gil;Hong, Ji-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

SMA(SHAPE MEMORY ALLOY) ACTUATOR USING FORCED CONVECTION (강제 대류를 이용한 형상기억합금 작동기)

  • Jun Hyoung Yoll;Kim Jung-Hoon;Park Eung Sik
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.48-53
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA actuator along with its capabilities and limitations. Convective heating and cooling using water actuate the SMA(Shape memory alloy) element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater(burner), control unit and a displacement amplification device. The experimental test of the SMA actuator system results in 150 MPa stress(force : 1560 N) with $3\%$ strain and 0.5 Hz. actuation frequency. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

Study on an Intermediate Compound Preparation for a HTGR Nuclear Fuel (고온가스로용 핵연료 중간화합물 제조에 대한 연구)

  • Kim, Yeon-Ku;Suhr, Dong-Soo;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.725-733
    • /
    • 2008
  • In this study the preparation method of the spherical ADU droplets, intermediate compound of a HTGR nuclear fuel, was detailed-reviewed and then, the characteristics on an ageing and a washing steps among the wet process and the thermal treatment process on the died-ADU${\rightarrow}UO_3$ conversion with the high temperature furnaces were studied. The key parameters for spherical droplets forming are a precise control of feed rate and a suitable viscosity value selection of a broth solution. Also, a harmony of vibrating frequency and amplitude of a vibration dropping system are important factor. In our case, an uranium concentration is $0.5{\sim}0.7mol/l$, viscosity is $50{\sim}80$ centi-Poise, vibration frequency is about 100Hz. In thermal treatment for no crack spherical $UO_3$ particle, the heating rate in the calcination must be operated below $2^{\circ}C$/min, in air atmosphere.