• Title/Summary/Keyword: High Frequency Coil

Search Result 255, Processing Time 0.023 seconds

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Vibrational Characteristics of Magnetostrictive Materials for a Vibration Assisted Cutting Device (진동절삭기 구성을 위한 자기변형 재료의 진동 특성 규명)

  • Lee, Ho-Cheol;Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1214-1220
    • /
    • 2012
  • Vibration assisted cutting (VAC) is one of the promising methods for precision machining, which has been normally equipped with piezoelectric materials. In this paper, a feasibility of applying magnetostrictive materials to VAC as a cutting device instead of piezoelectric materials was studied. For this, the vibrational characteristics of a magnetostrictive material was investigated with respect to a coil design, a preload, and the effects of a biasing and an exciting magnetic fields. The output strain of a magnetostrictive material is restricted due to an increasing inductive impedance as the exciting frequency increases and the heat of coil, etc. Through the experimental results, it was found that the biasing and the exciting magnetic field affected the output performance significantly but not the preload. In conclusion, the magnetostrictive material could be used only in the low frequency range but not a good candidate for high frequency actuating application.

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF

The Fabrication and Measurement of Air Core Inductor (공심인덕터의 제조 및 특성평가)

  • Jeong, S.J.;Song, Y.S.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1479-1481
    • /
    • 1996
  • The Purpose of this paper is to produce air core inductor and measure its electrical properties for high frequency. Especially we focused attention on the effect of geometrical parameters such as coil width, distance between coils, turn number. In addition, the influence of film morphology at inductor was investigated. Increase of coil width and decrease of turn number resulted in promotion of electric properties.

  • PDF

Design of Moving Coil Type Optical Pickup Actuator for Flexible Disk (유연디스크용 가동 코일형 광 픽업 엑추에이터 개발)

  • Kim, Yoon-Ki;Song, Myeong-Gyu;Lee, Dong-Ju;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.479-483
    • /
    • 2006
  • As high-definition television(HDTV) broadcasting were generalized, there have been many researches and developments about large storage capacity and fast data transfer rate in optical disk drives(ODD). Pickup actuators must have high flexible mode frequencies and gain margins. Flexible modes are caused by the flexibility of moving parts in the actuator and a servo bandwidth is limited by them. As a result, the system becomes unstable for high-speed operations in high density reading and recording. In this paper, we suggest improved modeling method that considers the bonding layer. And, flexible mode frequency of actuator is improved by Design of Experiment of lens holder. Magnet circuit is designed considering the relation with moving part. Through improving yoke design, the magnetic flux is changed and DC tilt is reduced. Consequently, we designed actuator which has high flexible mode frequency and gain margins.

  • PDF

Design of Moving Coil Type Optical Pickup Actuator for Flexible Disk System (유연디스크용 가동 코일형 광 픽업 엑추에이터 개발)

  • Kim, Yoon-Ki;Song, Myeong-Gyu;Lee, Dong-Ju;Yoo, Jeong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.240-244
    • /
    • 2006
  • As high-definition television(HDTV) broadcasting becoming more generalized, there have been many researches and developments about a large storage capacity and a fast data transfer rate in optical disk drives (ODD). Pickup actuators must have high flexible mode frequencies and large gain margins. Flexible modes are caused by the flexibility of moving parts in the actuator and a servo bandwidth is limited by them. As a result, the system becomes unstable for high-speed operations in high density reading and recording. In this paper, we suggest improved modeling method in considering of the bonding layer. And, the flexible mode frequency of actuator is improved by Design of Experiments of lens holder. The Magnet circuit is designed considering the relation with the moving part. Through improving the yoke design, the magnetic flux is changed and the DC tilt is reduced. Consequently, we designed an actuator which has a high flexible mode frequency and a large gain margins.

  • PDF

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

C.A.D. and Characteristics of High Frequency Induction Heating Load Circuit (고주파 유도가열 부하회로의 C.AcD와그 발)

  • Ju-Hong Kim;Ki-Hwan Eom
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.4
    • /
    • pp.153-153
    • /
    • 1985
  • A method of computer aided design (C.A.D.) is proposed to analize a load circuit of a high frequency induction heating. Various formulas are derived from the properity of the heating load, which is useful for the design of heating materials. A load circuit which is designed by the proposed C.A.D. is realized and tested. The experimental results show in good agreement with the theoritical analysies. Especially the result reveal that the power transfer efficiency increases as the Q and coupling coefficient of the work coil increase.

Key parameters of toroidal HTS coil for a superconducting magnetic energy storage system

  • Miyeon, Yoon;Jinwoo, Han;Ji-Kwang, Lee;Kyeongdal, Choi;Jung Tae, Lee;Seungyong, Hahn;Woo-Seok, Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.50-54
    • /
    • 2022
  • High temperature superconducting (HTS) magnets for large-capacity energy storage system need to be composed of toroid magnets with high energy density, low leakage magnetic fields, and easy installation. To realize such a large capacity of a toroid HTS magnet, an HTS cable with large current capacity would be preferred because of the limited DC link voltage and instantaneous high power required for compensation of the disturbance in the power grid. In this paper, the optimal operating strategies of the SMES for peak load reduction of the microgrid system were calculated according to the load variation characteristics, and the effect of compensation of the frequency change in microgrid with a SMES were also simulated. Based on the result of the simulation, key design parameters of SMES coil were presented for two cases to define the specification of the HTS cable with large current capacities for winding of HTS toroid coils, which will be need for development of the HTS cable as a future work.