• Title/Summary/Keyword: High Energetic Materials

Search Result 78, Processing Time 0.022 seconds

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application (충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.571-579
    • /
    • 2009
  • For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

Characterization of energetic meterials using thermal calorimetry (등전환 방법을 이용한 고에너지 물질의 노화 효과 예측)

  • Kim, Yoocheon;Oh, Juyoung;Ambekar, Aniruda;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.547-553
    • /
    • 2017
  • Thermal analysis of three energetic materials used in pyroelectric device was performed using Differential Scanning Calorimetry (DSC). The theoretical method for extracting the reaction rate equation of energetic materials using DSC experimental data is proposed and the reaction rate extraction is performed. The results of the DSC were analyzed by the conversion method such as Friedman. Activation energy and frequency factor according to mass fraction were extracted to complete the reaction rate equation. The extracted reaction rate equation has a form that represents the entire chemical reaction process, not the assumption that the chemical reaction process of the high energy material is a main step in several stages. It has considerable advantages in terms of theoretical and accuracy as compared with the chemical reaction rate form extracted through conventional thermal analysis experiments. Using the derived reaction rate equation, we predicted the performance change of three energetic materials operating on actual storage condition over 20 years.

  • PDF

Study of Supersonic Flame Acceleration within AN-based High Explosive Containing Various Gap Materials (다양한 틈새 물질을 포함하는 AN계열 화약의 초음속 화염 전파 특성 연구)

  • Lee, Jinwook;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-42
    • /
    • 2013
  • We study the gap effect on detonating high explosives using numerical simulation. The characteristic acoustic impedance theory is applied to understand the reflection and transmission phenomena associated with gap test of high explosives and solid propellants. A block of charge with embedded multiple gaps is detonated at one end to understand the ensuing detonation propagation through pores and non uniformity of the tested material. A high-order multimaterial simulation provides a meaningful insight into how material interface dynamics affect the ignition response of energetic materials under a shock loading.

The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process (고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • Zirconium potassium perchlorate(ZPP) is an igniter composed of potassium perchlorate as an oxidizing agent and zirconium as a fuel with a Viton binder. ZPP has been used to provide an ignition source in the aerospace, propulsion, and automotive industries. This study investigates the manufacturing process and characteristics of ZPP, such performance and shape/calorimetry/pressure characteristics with respect to pyrotechnic mechanical device(PMD). During the production of ZPP, the mixing process was designed to produce uniform particle size and shape by mixing the raw materials at high speed.

Synthesis and Characterization of Tetrazine Derivatives as High Energy Propellants (테트라진 계열의 추진 물질 합성 연구)

  • Lee, Woonghee;Park, Youngchul;Joo, Young-Hyuk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.38-47
    • /
    • 2013
  • Traditional propellants release toxic gases during combustion that are harmful to the environment. This study describes a novel synthetic process of two high nitrogen containing tetrazines, TATTz and BTATz, which can be adapted as solid fuels for a solution to environmental concerns. The compounds were characterized by NMR, IR spectroscopy, and differential scanning calorimetry(DSC). Detonation properties were calculated with the EXPLO5 program based on calculated heats of formation and measured densities.

The Study on the Synthesis of Triazole Derivatives as Energetic Plasticizer (트리아졸 계열의 에너지 가소제 합성 연구)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • Most of propellants that is used widely in the world release toxic gases such as methane gas and carbon dioxide during combustion which are noxious to the environment. This study established a synthetic process of a high nitrogen containing derivative of triazole, 4,5-bis(azidomethyl)-methyl-1,2,3-triazole (DAMTR), which can be applied as energetic plasticizer to environmental concerns. Also, the compound was characterized by NMR, IR spectroscopy, and physical properties such as glass transition temperature, melting point, decomposition temperature, density, impact sensitivity, viscosity and volatility were measured. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMTR were calculated using Gaussian 09 and EXPLO5 programs.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF