• Title/Summary/Keyword: High Efficiency LED

Search Result 514, Processing Time 0.03 seconds

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

Immobilization of Laccase on $SiO_2$ Nanocarriers Improves Its Stability and Reusability

  • Patel, Sanjay K.S.;Kalia, Vipin C.;Choi, Joon-Ho;Haw, Jung-Rim;Kim, In-Won;Lee, Jung Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.639-647
    • /
    • 2014
  • Laccases have a broad range of industrial applications. In this study, we immobilized laccase on $SiO_2$ nanoparticles to overcome problems associated with stability and reusability of the free enzyme. Among different reagents used to functionally activate the nanoparticles, glutaraldehyde was found to be the most effective for immobilization. Optimization of the immobilization pH, temperature, enzyme loading, and incubation period led to a maximum immobilization yield of 75.8% and an immobilization efficiency of 92.9%. The optimum pH and temperature for immobilized laccase were 3.5 and $45^{\circ}C$, respectively, which differed from the values of pH 3.0 and $40^{\circ}C$ obtained for the free enzyme. Immobilized laccase retained high residual activities over a broad range of pH and temperature. The kinetic parameter $V_{max}$ was slightly reduced from 1,890 to 1,630 ${\mu}mol/min/mg$ protein, and $K_m$ was increased from 29.3 to 45.6. The thermal stability of immobilized laccase was significantly higher than that of the free enzyme, with a half-life 11- and 18-fold higher at temperatures of $50^{\circ}C$ and $60^{\circ}C$, respectively. In addition, residual activity was 82.6% after 10 cycles of use. Thus, laccase immobilized on $SiO_2$ nanoparticles functionally activated with glutaraldehyde has broad pH and temperature ranges, thermostability, and high reusability compared with the free enzyme. It constitutes a notably efficient system for biotechnological applications.

Indoor Environment Control System Utilizing The Internet of Things (사물인터넷을 활용한 실내 환경 제어 시스템)

  • An, Yoon-Jung;Kim, Dong-Hyeok;Lee, Jee-Hyun;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.645-650
    • /
    • 2017
  • It is a system that controls temperature, humidity and fine-dust to make interior environment more comfortable for modern people who spend 90% of the time in indoor. In an experiment of finding which one of temperature and humidity influence more to discomfort index, for a fixed temperature of 21, discomfort index increased by 0.1 with a 1 change of humidity, and for a fixed humidity of 40, discomfort index increased by 1.2 with a 1 change of temperature. As a result, it was found that the temperature is more influential than the humidity to discomfort index. In an experiment of measuring communicational limitation of Bluetooth, the communication was possible for at most 30 meters without obstacles. With high obstacles like walls or steel bars, it was able to penetrate at most 2 obstacles and maximum distance which it can communicate was 10 meters for just one high molecule obstacle.

Planning for Adapting to the Rural Region Impacts of Climate Change - Case study in Yesan - (기후변화에 따른 농촌지역 영향 및 대응방안 연구 - 예산군을 대상으로 -)

  • Lee, Gyeong-Jin;Cha, Jung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.115-123
    • /
    • 2013
  • Owing to increase of meteorological disasters by climate change, it needs to study of climate change which will be able to deal with adaption for basic local authorities. A case study area of Yesan have been impacted by land-use which alter natural environment demage. It has led to micro-climate change impacts in rural area, Yesan. In order to adapt to the effects, this paper estimated temperature change in productivity of fruits and conducted decline of nonpoint pollutant loadings. As the results of temperature change of effecting on growth of apple, since a rise in temperature have not increased high, therefore the apple productivity could not be influence until 2030s. While the apple productivity could be declined 14.8% in 2060s. In addition, it supposes that the productivity would be decreased 44.5% in 2090s. Furthermore, it showed that the apple maturity has become worse, because length of high temperature has dramatic increased 54.2% in 2030s, 103.2% in 2060s and 154.0% in 2060s beside 2000, respectively, compared with 2000. As results of analysing between the future rainfall characteristics and nonpoint pollutant loadings, the subject of reduction of nonpoint pollutant was efficiency when it implemented around Oga-myeon or Deoksan-myeon Dun-ri. This study classified the region more detail each Eup and Myeon after that it analysed the rural region impacts of climate change for basic local authorities. Hence, this study is able to predict adaptation of rural region impacts of climate change. Due to increase of green house gases emission, meteorological disasters could often occur in the future. Therefore, it needs follow-up studies that assess climate change of effecting on rural region.

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization (고온, 고압에서의 요오드 치환 Polycarbosilane의 합성 및 특성)

  • Byen, Ji Cheol;Sharbidre, Rakesh Sadanand;Kim, Yoon Ho;Park, Seung Min;Ko, Myeong Seok;Min, Hyo Jin;Lee, Na young;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.489-494
    • /
    • 2020
  • SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.

Development of Drug-Loaded PLGA Microparticles with Different Release Patterns for Prolonged Drug Delivery

  • Choi, Yeon-Soon;Joo, Jae-Ryang;Hong, Areum;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.867-872
    • /
    • 2011
  • For the prolonged delivery and sustained release rates of low molecular weight drugs, poly(lactic-co-glycolic acid) (PLGA) microparticles containing the drug SKL-2020 have been investigated. On increasing polyvinyl alcohol (PVA) concentration (from 0.2% to 5%), the size of microparticles decreased (from $48.02{\mu}m$ to $10.63{\mu}m$) and more uniform size distribution was noticeable due to the powerful emulsifying ability of PVA. A higher drug loading (from 5% to 20%) caused a larger concentration gradient between 2 phases at the polymer precipitation step; this resulted in decreased encapsulation efficiency (from 34.19% to 25.67%) and a greater initial burst (from 61.71% to 70.05%). SKL-2020-loaded PLGA microparticles prepared with different fabrication conditions exhibited unique release patterns of SKL-2020. High PVA concentration and high drug loading led to an initial burst effect by rapid drug diffusion through the polymer matrix. Since PLGA microparticles enabled the slow release of SKL-2020 over 1 week in vitro and in vivo, more convenient and comfortable treatment could be facilitated with less frequent administration. It is feasible to design a release profile by mixing microparticles that were prepared with different fabrication conditions. By this method, the initial burst could be repressed properly and drug release rate could decrease.

Competitiveness Enhancement for Local Commercial Banks in Vietnam (베트남 일반은행의 경쟁력 제고에 관한 연구)

  • Dinh, Nguyen Yen Chi;Kim, Jung-Ho
    • International Area Studies Review
    • /
    • v.21 no.2
    • /
    • pp.171-196
    • /
    • 2017
  • This study employed the Analytical Hierarchy Process (AHP) methodology with the enhancement of the competitiveness of Vietnamese commercial banks set as the overall goal of the model. Analysis of the survey questionnaire based on pair-wise comparisons and collected from experts in the field of banking led to three significant findings. First, banking safety is the most important evaluation criteria for the competitiveness of local commercial banks in Vietnam, followed by operating efficiency, intangible values and large scale. Second, in order to achieve the overall goal of enhancing competitiveness for local banks, securing healthy financial conditions should be made the priority. Effective management systems, strategic human resource planning and high-quality products and services all show strong connections to achieving the evaluation criteria. Third, the study found that bad debt settlement is essential in obtaining healthy financial conditions. In order to introduce effective management systems as well as high-quality products and services, technological advances are very important. Improving the quality of executives and staff is imperative for strategic human resource planning purposes.

Effects of PEG addition as an additive for electroplating of Cu at high current density (고전류밀도 전해도금 공정에서 PEG 첨가 효과)

  • Byeoung-Jae Kang;Jun-Seo Yoon;Jong-Jae Park;Tae-Gyu Woo;Il-Song Park
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.274-284
    • /
    • 2024
  • In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO4 and 100 g/L H2SO4, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.

Micro Light-Emitting Diodes with 3D-Printed Hydrogel Microlens for Optical Property Enhancements (3D 프린팅된 하이드로젤 마이크로렌즈를 통한 마이크로 LED의 광학적 특성 향상 연구)

  • Yujin Ko;Jeong Hyeon Kim;Sang Yoon Park;Kang Hyeon Kim;Seong Min Hong;Bo-Yeon Lee;Han Eol Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.554-561
    • /
    • 2024
  • Micro light-emitting diodes (µLEDs) have been utilized in various fields such as displays, and smart devices, due to their superior stabilities. Since the applications of the µLEDs have been extended to medical devices and wearable sensors, excellent optical properties and uniformity of the µLEDs are important. Hence, several researchers have investigated to enhance the optical efficiency of the µLEDs through micro/nano lens. However, the reported methods for realizing the micro/nano lens have some drawbacks such as complex and high-cost manufacturing processes. Herein, we developed µLEDs with 3D-printed hydrogel microlenses. The printed hydrogel had high transparency and excellent adhesive strength, allowing it to attach onto top surface of the µLEDs without any additional adhesives. Microscale printing technology using a 3D printer achieved quick and fine printing in desired shapes and arrangements, showing the possibility of mass production. The 3D-printed microlens can be applied to improve not only the optical properties of µLEDs but also other optical devices.