• Title/Summary/Keyword: High Efficiency LED

Search Result 509, Processing Time 0.028 seconds

Effect of Growth Regulator, Sucrose, and Minimal-growth Conservation on In Vitro Propagation of Virus-free Sweet Potato Plantlets (고구마 무병묘의 기내 증식에 미치는 생장조절물질, Sucrose, 최소생장 보존의 영향)

  • Lee, Na Rha;Lee, Seung Yeob
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The influence of growth regulators (NAA and BA) and sucrose concentrations (0, 3, 5, 7, 9%) on in vitro rapid-propagation of virus-free sweet potato [Ipomoea batatas (L.) Lam.] was investigated with single-node or shoot-tip culture of two cultivars ('Matnami' and 'Shinhwangmi'). The survival rate and growth of shoot-tip explant was also investigated under the presence or absence of light (blue and red LED = 7:3, 150±5 μmol·m-2·s-1 PPFD) during minimal-growth in vitro conservation at 15℃. Vine length, vine diameter, fresh weight and dry weight were enhanced without callusing of explant in the MS medium supplemented with 0.2-0.5 mg·L-1 BA. The growth of single-node and shoot-tip explants were significantly enhanced with the increase of vine length, number of leaf, number of root, fresh weight, and dry weight in the solid medium containing 5% sucrose and 0.2 mg·L-1 BA. Vine elongation of shoot-tip explants were highest in the liquid medium containing 3% sucrose than the solid medium. The survival rate of minimal-growth in vitro conservation was 100% in 5 months under the presence of light (LED, 150±5 μmol·m-2·s-1 PPFD) at 15℃, but the explants in dark condition died in 3 months. The light was absolutely necessary for the in vitro conservation under minimal-growth conditions of virus-free sweet potato plantlets at 15℃, and the high density of explants (10 plantlets per Petri Dish) was increased the efficiency of mass conservation.

A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries (반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구)

  • Jang, Sung-Su;Han, Jae-Kook;Cho, Hyun-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.88-95
    • /
    • 2017
  • The usage of toxic gas in Korea is increasing in the development of high-tech industries such as semiconductors, displays and solar panels. The recent survey of domestic toxic gas consumption indicates an increase in annual average of 12.4 percent, but it is still focused on usage, and it is negligent in safety and treating the post. In September 2012, an accident occurred in Gu-mi involving hydrofluoric acid leak demonstrates the absence of safety management. Due to the incident, the government, industry and academia have been interested in chemical substances(toxic gas), and the government-led safety management has been established and implemented, but there are still a lot of safety blind spots. The purpose of this study is to develop effective measurement methods for the destruction or removal efficiency of gaseous materials emitted from the Scrubber used in the semiconductor and display industries. Also, this study demonstrated how toxic gas facilities can be applied without error by verification test for the measurement method guideline of the destruction or removal efficiency of the green-house gas reduction facility in the semiconductor and display industries used by the National Institute of Environmental Research and the UNFCCC, and suggested the differentiated measurement methods for toxic gas reduction facilities, and the third party certification for safety facilities is needed to prevent toxic gas accidents.

Effect of LED Light Quality Treatment on the Functional Optimization of Foliage Plant (LED 광질이 관엽식물의 기능성 최적화에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Ann, Seoung-Won;Choi, Won-Chun;Lee, Myung-Won;Lee, Kook-Han;Liu, Xiao-Ming
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.633-640
    • /
    • 2012
  • White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth. On the other hand, in the results of examining physiological changes before and after treatment on fine dust PM10 and carbon dioxide removal capacity in a closed chamber under an artificial light source, the patterns of carbon dioxide and fine dust removal were similar among the treatment groups according to light condition, but according to plant type, the removal rate per unit leaf area was highest in $Spathiphyllum$ and lowest in $Dieffenbachia$. In the experiment on dust and carbon dioxide removal, the photosynthetic rate was over 2 times higher after the treatment, and the rate increased particularly markedly under compound light and white light, suggesting that the photosynthetic rate of plants increases differently according to light quality. These results show that light quality has a significant effect on the photosynthetic rate of plants, and suggests that plants with a high photosynthetic rate also have a high carbon dioxide and dust removal capacity. In conclusion, the photosynthetic rate of foliage plants increased under white and blue light that affect photosynthesis and the increased photosynthetic rate reduced carbon dioxide and fine dust, and therefore white and compound light were found to be the optimal light sources most functional and economically efficient in improving ornamental value and indoor air quality.

Improvement of Multiple-sensor based Frost Observation System (MFOS v2) (다중센서 기반 서리관측 시스템의 개선: MFOS v2)

  • Suhyun Kim;Seung-Jae Lee;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.226-235
    • /
    • 2023
  • This study aimed to supplement the shortcomings of the Multiple-sensor-based Frost Observation System (MFOS). The developed frost observation system is an improvement of the existing system. Based on the leaf wetness sensor (LWS), it not only detects frost but also functions to predict surface temperature, which is a major factor in frost occurrence. With the existing observation system, 1) it is difficult to observe ice (frost) formation on the surface when capturing an image of the LWS with an RGB camera because the surface of the sensor reflects most visible light, 2) images captured using the RGB camera before and after sunrise are dark, and 3) the thermal infrared camera only shows the relative high and low temperature. To identify the ice (frost) generated on the surface of the LWS, a LWS that was painted black and three sheets of glass at the same height to be used as an auxiliary tool to check the occurrence of ice (frost) were installed. For RGB camera shooting before and after sunrise, synchronous LED lighting was installed so the power turns on/off according to the camera shooting time. The existing thermal infrared camera, which could only assess the relative temperature (high or low), was improved to extract the temperature value per pixel, and a comparison with the surface temperature sensor installed by the National Institute of Meteorological Sciences (NIMS) was performed to verify its accuracy. As a result of installing and operating the MFOS v2, which reflects these improvements, the accuracy and efficiency of automatic frost observation were demonstrated to be improved, and the usefulness of the data as input data for the frost prediction model was enhanced.

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

Immobilization of Laccase on $SiO_2$ Nanocarriers Improves Its Stability and Reusability

  • Patel, Sanjay K.S.;Kalia, Vipin C.;Choi, Joon-Ho;Haw, Jung-Rim;Kim, In-Won;Lee, Jung Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.639-647
    • /
    • 2014
  • Laccases have a broad range of industrial applications. In this study, we immobilized laccase on $SiO_2$ nanoparticles to overcome problems associated with stability and reusability of the free enzyme. Among different reagents used to functionally activate the nanoparticles, glutaraldehyde was found to be the most effective for immobilization. Optimization of the immobilization pH, temperature, enzyme loading, and incubation period led to a maximum immobilization yield of 75.8% and an immobilization efficiency of 92.9%. The optimum pH and temperature for immobilized laccase were 3.5 and $45^{\circ}C$, respectively, which differed from the values of pH 3.0 and $40^{\circ}C$ obtained for the free enzyme. Immobilized laccase retained high residual activities over a broad range of pH and temperature. The kinetic parameter $V_{max}$ was slightly reduced from 1,890 to 1,630 ${\mu}mol/min/mg$ protein, and $K_m$ was increased from 29.3 to 45.6. The thermal stability of immobilized laccase was significantly higher than that of the free enzyme, with a half-life 11- and 18-fold higher at temperatures of $50^{\circ}C$ and $60^{\circ}C$, respectively. In addition, residual activity was 82.6% after 10 cycles of use. Thus, laccase immobilized on $SiO_2$ nanoparticles functionally activated with glutaraldehyde has broad pH and temperature ranges, thermostability, and high reusability compared with the free enzyme. It constitutes a notably efficient system for biotechnological applications.

Indoor Environment Control System Utilizing The Internet of Things (사물인터넷을 활용한 실내 환경 제어 시스템)

  • An, Yoon-Jung;Kim, Dong-Hyeok;Lee, Jee-Hyun;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.645-650
    • /
    • 2017
  • It is a system that controls temperature, humidity and fine-dust to make interior environment more comfortable for modern people who spend 90% of the time in indoor. In an experiment of finding which one of temperature and humidity influence more to discomfort index, for a fixed temperature of 21, discomfort index increased by 0.1 with a 1 change of humidity, and for a fixed humidity of 40, discomfort index increased by 1.2 with a 1 change of temperature. As a result, it was found that the temperature is more influential than the humidity to discomfort index. In an experiment of measuring communicational limitation of Bluetooth, the communication was possible for at most 30 meters without obstacles. With high obstacles like walls or steel bars, it was able to penetrate at most 2 obstacles and maximum distance which it can communicate was 10 meters for just one high molecule obstacle.

Planning for Adapting to the Rural Region Impacts of Climate Change - Case study in Yesan - (기후변화에 따른 농촌지역 영향 및 대응방안 연구 - 예산군을 대상으로 -)

  • Lee, Gyeong-Jin;Cha, Jung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.115-123
    • /
    • 2013
  • Owing to increase of meteorological disasters by climate change, it needs to study of climate change which will be able to deal with adaption for basic local authorities. A case study area of Yesan have been impacted by land-use which alter natural environment demage. It has led to micro-climate change impacts in rural area, Yesan. In order to adapt to the effects, this paper estimated temperature change in productivity of fruits and conducted decline of nonpoint pollutant loadings. As the results of temperature change of effecting on growth of apple, since a rise in temperature have not increased high, therefore the apple productivity could not be influence until 2030s. While the apple productivity could be declined 14.8% in 2060s. In addition, it supposes that the productivity would be decreased 44.5% in 2090s. Furthermore, it showed that the apple maturity has become worse, because length of high temperature has dramatic increased 54.2% in 2030s, 103.2% in 2060s and 154.0% in 2060s beside 2000, respectively, compared with 2000. As results of analysing between the future rainfall characteristics and nonpoint pollutant loadings, the subject of reduction of nonpoint pollutant was efficiency when it implemented around Oga-myeon or Deoksan-myeon Dun-ri. This study classified the region more detail each Eup and Myeon after that it analysed the rural region impacts of climate change for basic local authorities. Hence, this study is able to predict adaptation of rural region impacts of climate change. Due to increase of green house gases emission, meteorological disasters could often occur in the future. Therefore, it needs follow-up studies that assess climate change of effecting on rural region.