• Title/Summary/Keyword: High Dose Rate Brachytherapy

Search Result 93, Processing Time 0.039 seconds

Institutional Experience of Interstitial Brachytherapy for Head and Neck Cancer with a Comparison of High- and Low Dose Rate Practice

  • Mohanti, Bidhu Kalyan;Sahai, Puja;Thakar, Alok;Sikka, Kapil;Bhasker, Suman;Sharma, Atul;Sharma, Seema;Bahadur, Sudhir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.813-818
    • /
    • 2014
  • Aims: To describe our institutional experience with high dose rate (HDR) interstitial brachytherapy (IBT) compared with previously reported results on the low dose rate (LDR) practice for head and neck cancer. Materials and Methods: Eighty-four patients with oral cavity (n=70) or oropharyngeal cancer (n=14) were treated with 192Ir HDR-IBT. Seventy-eight patients had stage I or II tumour. The patients treated with IBT alone (n=42) received 39-42 Gy/10-14 fractions (median=40 Gy/10 fractions). With respect to the combination therapy group (n=42), prescription dose comprised of 12-18 Gy/3-6 fractions (median=15 Gy/5 fractions) for IBT and 40-50 Gy/20-25 fractions (median=50 Gy/25 fractions) for external radiotherapy. Brachytherapy was given as 2 fractions per day 6 hours apart with 4 Gy per fraction for monotherapy and 3 Gy per fraction for combination therapy. Results: Four patients were not evaluable in the analysis of outcome. The primary site relapse rates were 23.8% (10/42) and 68.4% (26/38) in patients treated with IBT alone and combination therapy, respectively (p<0.001). Salvage surgery was performed in 19 patients. The 5-year local control rate was estimated at 62% and the disease-free survival (DFS) rate at 52% for all patients. Local control with respect to T1 and T2 tumours was 84% and 42%, respectively. Conclusions: Our present series on HDR-IBT and the previous report on LDR-IBT for head and neck cancer demonstrated similar DFS rates at 5 years (52%). The rate of regional failure in node-negative patients was <20% in both of our series. HDR-IBT offers similar results to LDR-IBT for head and neck cancer.

Variation of optimization techniques for high dose rate brachytherapy in cervical cancer treatment

  • Azahari, Ahmad Naqiuddin;Ghani, Ahmad Tirmizi;Abdullah, Reduan;Jayamani, Jayapramila;Appalanaido, Gokula Kumar;Jalil, Jasmin;Aziz, Mohd Zahri Abdul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1414-1420
    • /
    • 2022
  • High dose rate (HDR) brachytherapy treatment planning usually involves optimization methods to deliver uniform dose to the target volume and minimize dose to the healthy tissues. Four optimizations were used to evaluate the high-risk clinical target volume (HRCTV) coverage and organ at risk (OAR). Dose-volume histogram (DVH) and dosimetric parameters were analyzed and evaluated. Better coverage was achieved with PGO (mean CI = 0.95), but there were no significant mean CI differences than GrO (p = 0.03322). Mean EQD2 doses to HRCTV (D90) were also superior for PGO with no significant mean EQD2 doses than GrO (p = 0.9410). The mean EQD2 doses to bladder, rectum, and sigmoid were significantly higher for NO plan than PO, GrO, and PGO. PO significantly reduced the mean EQD2 doses to bladder, rectum, and sigmoid but compromising the conformity index to HRCTV. PGO was superior in conformity index (CI) and mean EQD2 doses to HRCTV compared with the GrO plan but not statistically significant. The mean EQD2 doses to the rectum by PGO plan slightly exceeded the limit from ABS recommendation (mean EQD2 dose = 78.08 Gy EQD2). However, PGO can shorten the treatment planning process without compromising the CI and keeping the OARs dose below the tolerance limit.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

Accuracy of Dose Estimation in High Dose Rate Intracavitary Radiotherapy of Carcinoma of the Uterine Cervix (자궁경부암 고선량율 강내치료의 치료선량 정확도에 관한 연구)

  • Huh, Seung-Jae;Ha, Sung-Whan;Chai, Kyu-Young
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.137-140
    • /
    • 1987
  • In brachytherapy of uterine conical cancer using a high dose rate remote afterloading system, it is of prime importance to deliver a accurate dose in each fractionated treatment by minimizing the difference between the pre-treatment planned and post-treatment calculated doses. The post-treatment calculated point A dose was not much different from the pretreatment planned dose (500 cGy). The $average{\pm}standard$ deviation was $500\pm18cGy$ and 84 percent of 82 intracavitary radiotherapy was within the range of $500\pm25cGy$.

  • PDF

High Dose Rate Interstitial Brachytherapy in Soft Tissue Sarcomas : Technical Aspect (연부조직종양에서 고선량율 조직내 방사선치료: 기술적 측면에서의 고찰)

  • Chun Mison;Kang Seunghee;Kim Byoung-Suck;Oh Young-Taek
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Purpose : To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy Materials and Methods : Between May 1995 and Dec. 1997, ten patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1 ~l.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of high dose rate, iridium-192 implant which delivered 12~15 Gy to 1 cm distance from the center of source axis with 2~2.5 Gy/fraction, twice a day, starting on 6th day after the surgery, Within one month after the surgery, total dose of 50~55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. Results : All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12~41 months), no local recurrences were observed. And there was no severe form of chronic complication (RTOGIEORTC grade 3 or 4). Conclusion : The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  • PDF

High-Dose-Rate Brachytherapy for Uterine Cervical Cancer : The Results of Different Fractionation Regimen (자궁경부암의 고선량률 근접치료 : 분할선량에 따른 결과 비교)

  • Yoon, Won-Sup;Kim, Tae-Hyun;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.228-236
    • /
    • 2002
  • Purpose : Although high-dose-rate (HDR) brachytherapy regimens have been practiced with a variety of modalities and various degrees of success, few studies on the subject have been conducted. The purpose of this study was to compare the results of local control and late complication rate according to different HDR brachytherapy fractionation regimens in uterine cervical cancer patients. Methods and Materials : From November 1992 to March 1998, 224 patients with uterine conical cancer were treated with external beam irradiation and HDR brachytherapy. In external pelvic radiation therapy, the radiation dose was $45\~54\;Gy$ (median dose 54 Gy) with daily fraction size 1.8 Gy, five times per week. In HDR brachytherapy, 122 patients (Group A) were treated with three times weekly with 3 Gy to line-A (isodose line of 2 cm radius from source) and 102 patients (Group B) underwent the HDR brachytherapy twice weekly with 4 or 4.5 Gy to line-A after external beam irradiation. Iridium-192 was used as the source of HDR brachytherapy. Late complication was assessed from grade 1 to 5 using the RTOG morbidity grading system. Results : The local control rate (LCR) at 5 years was $80\%$ in group A and $84\%$ in group B (p=0.4523). In the patients treated with radiation therapy alone, LCR at 5 years was $60.9\%$ in group A and $76.9\%$ in group B (p=0.2557). In post-operative radiation therapy patients, LCR at 5 years was $92.6\%$ In group A and $91.6\%$ in group B (p=0.8867). The incidence of late complication was $18\%$ (22 patients) and $29.4\%$ (30 patients), of bladder complication was $9.8\%$ (12 patients) and $14.7\%$ (15 patients), and of rectal complication was $9.8\%$ (12 patients) and $21.6\%$ (22 patients), in group A and B, respectively. Lower fraction sized HDR brachytherapy was associated with decrease in late complication (p=0.0405) (rectal complication, p=0.0147; bladder complication, p=0.115). The same result was observed in postoperative radiation therapy patients (p=0.0860) and radiation only treated patients (0=0.0370). Conclusion : For radiation only treated patients, a greater number of itemized studies on the proper fraction size of HDR brachytherapy, with consideration for stages and prognostic factors, are required. In postoperative radiation therapy, the fraction size of HDR brachytherapy did not have much effect on local control, yet the incidence of late complication increased with the elevation in fraction size. We suggest that HDR brachytherapy three times weekly with 3 Gy could be an alternative method of therapy.

High versus Low Dose-Rate Intracavitary Irradiation for Adenocarcinoma of the Uterine Cervix (자궁경부 선암 환자에서 고선량률 강내치료와 저선량률 강내치료의 비교)

  • Kim Woo Chul;Kim Gwi Eon;Chung Eun Ji;Suh Chang Ok;Hong Soon Won;Cho Young Kap;Loh JK
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Purpose :The incidence of adenocarcinoma of the uterine cervix is low. Traditionally, Low Dose Rate (LDR) brachytherapy has been used as a standard modality in the treatment for patients with carcinoma of the uterine cervix. The purpose of this report is to evaluate the effects of the High dose rate (HDR) brachytherapy in the patients with adenocarcinoma of the uterine cervix compared with the LDR. : From January 1971 to December 1992, 106 patients of adenocarcinoma of uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University with curative intent. LDR brachytherapy was carried out on 35 patients and 71 patients were treated with HDR brachytherapy. In LDR Group, 8 patients were in stage I, 18 in stage II and 9 in stage III. External radiation therapy was delivered with 10 MV X-ray, daily 2 Gy fractionation, total dose 40$\~$46Gy (median 48 Gy). And LDR Radium intracavitary irradiation was peformed with Henschke applicator, 22$\~$59 Gy to point A (median 43 Gy). In HDR Group, there were 16 patients in stage 1, 38 in stage II and 17 in stage III. The total dose of external radiation was 40$\~$61 Gy(median 45 Gy), daily 1.8$\~$2.0 Gy. HDR Co-60 intracavitary irradiation was peformed with RALS (Remote Afterloading System), 30 $\~$ 57 Gy(median 39 Gy) to point A, 3 times a week, 3 Gy per fraction. Conclusion : The 5-year overall survival rate in LDR Group was 72.9$\%$, 61.9$\%$, 45.0$\%$ in stage I, II, III, respectively and corresponding figures for HDR were 87.1$\%$, 58.3$\%$, 41.2$\%$, respectively (p>0.05). There was no statistical difference in terms of the 5-year overall survival rate between HDR Group and LDR Group in adenocarcinoma of the uterine cervix. There was 11$\%$ of late complication rates in LDR Group and 27$\%$ in HDR Group. There were no prognostic factors compared HDR with LDR group. The incidence of the late complication rate in HDR Group stage II, III was higher than that in LDR Group(16.7$\%$ vs. 31.6$\%$ in stage II, 11.1$\%$ vs. 35.3$\%$ In stage III, p>0.05). Although the incidence of radiation induced late complication rate was higher in HDR Group stage II and III patients than that in the LDR Group, statistical significance was not detected and within acceptable level. Conclusion : There was no difference in terms of 5-year survival rate and failure pattern in the patients with adenocarcinoma of the uterine cervix treated with HDR and LDR brachytherapy. Even late complication rates were higher in the HDR group It was an acceptable range. This retrospective study suggests that HDR brachytherapy seems to replace the LDR brachytherapy in the adenocarcinoma of the uterine cervix. However, further studies will be required to refine the dose rate effects.

  • PDF

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.

Result of Radiotherapy in Non-metastatic Esophageal Cancer (원격전이의 증거가 없는 식도암의 방사선치료 성적)

  • Chai, Gyu-Young;Jang, Jeong-Soon;Lee, Jong-Seok
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 1995
  • Purpose : This study was done to evaluate preliminarily the role of intraluminal brachytherapy in the radiation treatment of non-metastatic esophageal cancer, Materials and Methods: We analyzed follow-up result of 21 patients treated at the dept. of therapeutic radiology in Gyeongsang national university hospital between April, 1989 and August, 1992. All patients received neoadjuvant chemotherapy(5-FU, Cispl-atin). Fifteen Patients were treated with external beam alone, and in remaining 6 patients, the external beam radiotherapy followed by intraluminal brachytherapy was done. Results : Among 21 patients, 7 patients showed complete tumor regression after completion of radiotherapy. But 2 of these complete responder recurred at the site of primary disease, so ultimate local control rate was $23.8\%$(5/21). Local control rate according to radiation treatment modality was $6.7\%$(1/15) in patients treaed with external irradiation only, and $66.7\%$ in patients treated with combined external irradiation and intraluminal brachytherapy. The 2 year NED survival rate was $6.6.\%$ in the former and $66.7\%$ in the latter. Conclusion: Although there should be consideration about case selection for addition of intraluminal brachytherapy intraluminal brachytherapy may be considerded as one of the method to enhance the local control probability of esophageal cancer.

  • PDF