Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.004

Variation of optimization techniques for high dose rate brachytherapy in cervical cancer treatment  

Azahari, Ahmad Naqiuddin (Advanced Medical and Dental Institute, Universiti Sains Malaysia)
Ghani, Ahmad Tirmizi (Center of Corporate Communications and Relations Management, Ground Floor Chancellory Building, Universiti Sultan Zainal Abidin, Gong Badak Campus)
Abdullah, Reduan (Advanced Medical and Dental Institute, Universiti Sains Malaysia)
Jayamani, Jayapramila (School of Health Sciences, Universiti Sains Malaysia)
Appalanaido, Gokula Kumar (Advanced Medical and Dental Institute, Universiti Sains Malaysia)
Jalil, Jasmin (Advanced Medical and Dental Institute, Universiti Sains Malaysia)
Aziz, Mohd Zahri Abdul (Advanced Medical and Dental Institute, Universiti Sains Malaysia)
Publication Information
Nuclear Engineering and Technology / v.54, no.4, 2022 , pp. 1414-1420 More about this Journal
Abstract
High dose rate (HDR) brachytherapy treatment planning usually involves optimization methods to deliver uniform dose to the target volume and minimize dose to the healthy tissues. Four optimizations were used to evaluate the high-risk clinical target volume (HRCTV) coverage and organ at risk (OAR). Dose-volume histogram (DVH) and dosimetric parameters were analyzed and evaluated. Better coverage was achieved with PGO (mean CI = 0.95), but there were no significant mean CI differences than GrO (p = 0.03322). Mean EQD2 doses to HRCTV (D90) were also superior for PGO with no significant mean EQD2 doses than GrO (p = 0.9410). The mean EQD2 doses to bladder, rectum, and sigmoid were significantly higher for NO plan than PO, GrO, and PGO. PO significantly reduced the mean EQD2 doses to bladder, rectum, and sigmoid but compromising the conformity index to HRCTV. PGO was superior in conformity index (CI) and mean EQD2 doses to HRCTV compared with the GrO plan but not statistically significant. The mean EQD2 doses to the rectum by PGO plan slightly exceeded the limit from ABS recommendation (mean EQD2 dose = 78.08 Gy EQD2). However, PGO can shorten the treatment planning process without compromising the CI and keeping the OARs dose below the tolerance limit.
Keywords
Brachytherapy; 3-D; Treatment planning; Cervix cancer; Optimization techniques;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G.K. Appalanaido, S.A. Shukor, A.S. Fan, S.E. Chong, H. Hussin, N.K.A. Karim, L.V. Meng, M.Z.A. Aziz, Palliative brachytherapy to axilla and hypopharynx in elderly patient with hypopharyngeal squamous cell carcinoma-case report, Rep. Practical Oncol. Radiother. 26 (4) (2021) 647-653, https://doi.org/10.5603/RPOR.a2021.0076.   DOI
2 I. Bansal, D. Panda, A. Rathi, A. Anand, A. Bansal, Rationale, indications, techniques and applications of interstitial brachytherapy for carcinoma cervix, Asian J. Oncol. 2 (2016) 69-78, https://doi.org/10.4103/2454-6798.197374.   DOI
3 C. Lapuz, C. Dempsey, A. Capp, P.C. O'Brien, Dosimetric comparison of optimization methods for multi-channel intracavitary brachytherapy for superficial vaginal tumors, Brachytherapy 12 (2013) 637-644, https://doi.org/10.1016/J.BRACHY.2013.04.009.   DOI
4 S. Jamema, S. Saju, U. Shetty, S. Pallad, D. Deshpande, S. Shrivastava, Dosimetric comparison of inverse optimization with geometric optimization in combination with graphical optimization for HDR prostate implants, J. Med. Phys. 31 (2006) 89-94, https://doi.org/10.4103/0971-6203.26694.   DOI
5 J.I. Prisciandaro, X. Zhao, S. Dieterich, Y. Hasan, S. Jolly, H.A. Al-Hallaq, Interstitial high-dose-rate gynecologic brachytherapy: clinical workflow experience from three academic institutions, Semin. Radiat. Oncol. 30 (2020) 29-38, https://doi.org/10.1016/J.SEMRADONC.2019.08.001.   DOI
6 B. Tang, X. Liu, X. Wang, S. Kang, P. Wang, J. Li, L.C. Orlandini, Dosimetric comparison of graphical optimization and inverse planning simulated annealing for brachytherapy of cervical cancer, J. Contemp. Brachytherapy 11 (2019) 379-383, https://doi.org/10.5114/jcb.2019.87145.   DOI
7 B. Shwetha, M. Ravikumar, A. Katke, S.S. Supe, G. VenkataGiri, N. Ramanand, T. Pasha, Dosimetric comparison of various optimization techniques for high dose rate brachytherapy of interstitial cervix implants, J. Appl. Clin. Med. Phys. 11 (2010) 225-230, https://doi.org/10.1120/jacmp.v11i3.3227.   DOI
8 C.M. Van Leeuwen, A.L. Oei, J. Crezee, A. Bel, N.A.P. Franken, L.J.A. Stalpers, H.P. Kok, The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies, Radiat. Oncol. 13 (1) (2018) 1-11, https://doi.org/10.1186/s13014-018-1040-z.   DOI
9 A. Holm, T. Larsson, A. Carlsson Tedgren, Impact of using linear optimization models in dose planning for HDR brachytherapy, Med. Phys. 39 (2) (2012) 1021-1028, https://doi.org/10.1118/1.3676179, 2012.   DOI
10 I. Fumagalli, C. Haie-Meder, C. Chargari, 3D brachytherapy for cervical cancer: new optimization ways, Cancer Radiother. 22 (2018) 345-351, https://doi.org/10.1016/J.CANRAD.2017.11.010.   DOI
11 R. Potter, C. Haie-Meder, E. Van Limbergen, I. Barillot, M. De Brabandere, J. Dimopoulos, I. Dumas, B. Erickson, S. Lang, A. Nulens, P. Petrow, J. Rownd, C. Kirisits, Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy - 3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiolo, Radiother. Oncol. 78 (2006) 67-77, https://doi.org/10.1016/j.radonc.2005.11.014.   DOI
12 N.S. A Shukor, M. Musarudin, R. Abdullah, M.Z. Abd Aziz, Effects of different volumes of inhomogeneous medium to the radial dose and anisotropy functions in HDR brachytherapy, J. Phys. Conf. 1497 (1) (2020), 012027, https://doi.org/10.1088/1742-6596/1497/1/012027.   DOI
13 A.N. Viswanathan, S. Beriwal, J.F. De Los Santos, D.J. Demanes, D. Gaffney, J. Hansen, E. Jones, C. Kirisits, B. Thomadsen, B. Erickson, American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy, Brachytherapy 11 (2012) 47-52, https://doi.org/10.1016/j.brachy.2011.07.002.   DOI
14 M. Carrara, D. Cusumano, T. Giandini, C. Tenconi, E. Mazzarella, S. Grisotto, E. Massari, D. Mazzeo, A. Cerrotta, B. Pappalardi, C. Fallai, E. Pignoli, Comparison of different treatment planning optimization methods for vaginal HDR brachytherapy with multi-channel applicators: a reduction of the high doses to the vaginal mucosa is possible, Phys. Med. 44 (2017) 58-65, https://doi.org/10.1016/j.ejmp.2017.11.007.   DOI
15 B. Chakrabarti, S. Basu-Roy, S.K. Kar, S. Das, A. Lahiri, Comparison of dose volume parameters evaluated using three forward planning - optimization techniques in cervical cancer brachytherapy involving two applicators, J. Contemp. Brachytherapy 9 (5) (2017) 431, https://doi.org/10.5114/jcb.2017.70677.   DOI
16 S.V. Jamema, S. Sharma, U. Mahantshetty, R. Engineer, S.K. Shrivastava, D.D. Deshpande, Comparison of IPSA with dose-point optimization and manual optimization for interstitial template brachytherapy for gynecologic cancers, Brachytherapy 10 (2011) 306-312, https://doi.org/10.1016/j.brachy.2010.08.011.   DOI
17 S. Anbumani, P. Anchineyan, A. Narayanasamy, S.R. Palled, S. Sathisan, P. Jayaraman, M. Selvi, R.S. Bilimagga, Clinical Study Treatment Planning Methods in High Dose Rate Interstitial Brachytherapy of Carcinoma Cervix: A Dosimetric and Radiobiological Analysis, International Scholarly Research Notices, 2014, https://doi.org/10.1155/2014/125020.   DOI
18 S. Roy, V. Subramani, K. Singh, A. Rathi, Dosimetric impact of dwell time deviation constraint on inverse brachytherapy treatment planning and comparison with conventional optimization method for interstitial brachytherapy implants, J. Cancer Res. Therapeut. 17 (2021) 463-470, https://doi.org/10.4103/JCRT.JCRT_749_19.   DOI
19 K. Derks, J.L.G. Steenhuijsen, H.A. Van Den Berg, S. Houterman, J. Cnossen, P. Van Haaren, K. De Jaeger, Impact of brachytherapy technique (2D versus 3D) on outcome following radiotherapy of cervical cancer, J. Contemp. Brachytherapy 10 (2018) 17-25, https://doi.org/10.5114/jcb.2018.73955.   DOI
20 A.G. Paul, A. Nalichowski, J. Abrams, P. Paximadis, L. Zhuang, S. Miller, Dosimetric evaluation of point A and volume-based high-dose-rate plans: a single institution study on adaptive brachytherapy planning for cervical cancer, J. Contemp. Brachytherapy 10 (2018) 202-210, https://doi.org/10.5114/jcb.2018.76782.   DOI
21 Z. Liu, H. Liang, X. Wang, H. Yang, Y. Deng, T. Luo, C. Yang, M. Lu, Q. Fu, X. Zhu, Comparison of graphical optimization or IPSA for improving brachytheraphy plans associated with inadequate target coverage for cervical cancer article, Sci. Rep. 7 (1) (2017) 1-7, https://doi.org/10.1038/s41598-017-16756-w.   DOI
22 S.V. Jamema, P.K. Sharma, D. Sharma, S. Laskar, D.D. Deshpande, S.K. Shrivastava, Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma, J. Cancer Res. Therapeut. 5 (2009) 240-246, https://doi.org/10.4103/0973-1482.59893.   DOI
23 C. Voyant, D. Julian, R. Roustit, K. Biffi, C. Lantieri, Biological effects and equivalent doses in radiotherapy: a software solution, Rep. Practical Oncol. Radiother. 19 (2014) 47-55, https://doi.org/10.1016/j.rpor.2013.08.004.   DOI