• Title/Summary/Keyword: High Damping Alloy

Search Result 38, Processing Time 0.05 seconds

Application of Fe-Mn High Damping Alloys for Reduction of Noise and Vibration in Power Plants (Fe-Mn 방진합금을 적용한 발전소 격납용기 살수펌프의 소음$\cdot$진동 저감효과에 관한 연구)

  • 백승한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.720-729
    • /
    • 1999
  • Coventional methods for reducing vibration in engineering designs (i.e. by stifferning or detuning) may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. Although several non ferrous damping alloys have been developed, none of those materials are applied in any industrial factor due largely to high production cost. To meet these requirement, we have developed a new Fe-Mn high damping alloy. In previous studies, we have reported that an Fe-17%Mn alloy exhibits the highest damping capacity(Specific Damping Capacity:SDC, 30%) among Fe-Mn binary system, and proposed that the boundaries of various types such as $\varepsilon$-martensite variant boundaries, stacking faults in $\varepsilon$-martensite, stacking faults in austenitic and ${\gamma}$$\gamma /\varepsilon$ interfaces give rise to a high damping capacity. The Fe-17%Mn alloy also has advantages of good mechanical properties(T.S. 70 kg/nm$^2$ and low cost over other damping alloys(1/4 times the cost of non-ferrous damping alloy). Thus, the Fe-17%Mn high damping alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components. In this paper, the overall properties of the Fe-17%Mn high damping alloy is introduced, and its applicability to containment spray pump in the power plant is discussed.

  • PDF

Effects of Ti on Mechanical Property and Damping Capacity in Hot-rolled Fe-17%Mn Alloy (열간압연한 Fe-17wt%Mn 합금의 기계적 성질과 진동감쇠능에 미치는 티타늄 첨가의 영향)

  • Kim, Tai-Hoon;Kim, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Effects of Ti on damping capacity and mechanical properties are investigated in hot rolled Fe-17%Mn alloy. The existing damping alloy with Fe-Mn binary system was limited the use by high production cost, however in case of using scrap iron instead of pure iron although the content of carbon is higher it is possible to be applied wider field especially construction items because the production cost is lower. However, the excellent specific damping capacity is dropped due to the high content of carbon, we developed advanced type of damping alloy included Ti. TiC is formed with added Ti and it holds the specific damping capacity similar to existing damping alloy. The effect of Ti on damping capacity is found to be beneficial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

Development of High Damping Alloys for Reduction of Noise and Vibration (소음.진동 제어를 위한 방진합금 개발)

  • Baik, Seung-Han;Kim, Jung-Chul;Han, Dong-Woon;Baik, Jin-Hyun;Kim, Tai-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.565-569
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloys. Also, the alloy has advantages of good mechanical properties and more economical than any other known damping alloys(1/4 times as cost of non-ferrous damping alloy). Thus, the high damping Fe-17%6Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity(SDC, 30%) and mechanical property(T.S 700MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit several such applications.

  • PDF

High temperature and damping properties of squeeze cast Mg hybrid Metal Matrix Composites. (하이브리드 Mg 복합재료의 진동 감쇠능 및 고온 특성평가)

  • 장재호;김봉룡;최일동;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.143-146
    • /
    • 2002
  • Mg alloy is the lightest material of structural materials and is noticed for lightweight automotive parts because of excellent castability, superior ductility and damping capacity than Al alloy. But Mg Alloy is poor corrosion resistance and high temperature creep properties. In this study, Mg Matrix Composites were fabricated by squeeze casting method to improve high temperature creep properties and damping capacity. Hybrid Mg composites reinforced with Alborex, graphite particle, and SiCp was improved creep properties and damping capacity compared with Mg alloy. Compared to the length ($9\mu\textrm{m}, 27\mu\textrm{m}, 45\mu\textrm{m} etc.$), Hybrid Mg composites reinforced with SiCp, one of the most superior of the length and Alborex were more superior than those reinforced with graphite particle and Alborex in mechanical properties, creep characteristics, and damping capacity, etc.

  • PDF

Thermo-dynamic Characteristics Of High Temperature Nitinol Shape Memory Alloy (고온용 Nitinol 형상기억합금의 열적/동역학적 특성평가)

  • Cha S.Y.;Park S.E.;Cho C.R.;Park J.K.;Jeong S.Y.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.441-445
    • /
    • 2005
  • In the resent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. But, no detailed researches between the thermo-dynamic property in Nitinol alloy have been done yet. In this study, the thermal property of high temperature Nitinol shape memory alloy were evaluated using differential scanning calorimeter(DSC). The structure property was investigated using X-ray diffraction(XRD). A dynamic mechanical analyzer(DMA) with three point bending mode was used to study storage and loss modulus of shape memory alloy according to the thirteen frequencies in the temperature range between 30 and $200^{\circ}C$. The effects of the temperature heating/cooling rate, the frequency on the damping capacity have been systematically investigated. Such a frequency and temperature changes also influenced significantly to the damping behavior of the shape memory alloy. It was also found that Nitinol exhibited high damping capacity during phase transformation.

  • PDF

Effects of Different Heat Treatments on Damping Capacity of Cu-55%Mn Alloy (Cu-55%Mn 합금의 진동감쇠능에 미치는 각종 열처리의 영향)

  • Chung, Tae-Shin;Jun, Joong-Hwan;Lee, Young-Kook;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • Effects of different heat treatments on microstructure and damping capacity of Cu-55%Mn alloy were investigated to find an optimum heat treatment condition for a maximum damping capacity. The alloy showed the high level of damping capacity in case of the aging at 375 and $400^{\circ}C$. This is ascribed to the FCC${\rightarrow}$FCT martensitic transformation and microstructural changes from mottled to tweed band type. The damping capacity had a maximum value of 0.33 in logarithmic decrement when the alloy was aged at $375^{\circ}C$ for 14 hours followed by 20 times of thermal cycling between room temperature and $250^{\circ}C$. The refinement of tweed structure by thermal cycling is thought to be responsible for the highest damping capacity.

  • PDF

Application of Fe-Mn Damping Alloy for Divided Spherical Bearing in Bridge (Fe-Mn 제진금속을 적용한 교량용 교좌장치)

  • Han, Dong-Woon;Kim, Tai-Hoon;Back, Jin-Hyun;Kim, Jung-Chul;Baik, Seung-Han;Yoo, Mun-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1024-1028
    • /
    • 2006
  • The Fe-Mn damping Alloys which combine a high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving fatigue, noise and vibration. This study is aimed at finding its applicability to divided spherical bearing in bridge. The results obtained are summarized as follows : 1) The specific damping capacity of the Fe-Mn damping alloy is superior to that of SM490B. 2) The divided spherical bearing manufactured Fe-Mn damping alloy passes the load test to confirm applicability of that in bridge.

  • PDF

Application of High Damping Alloys for Vibration Reduction in Bridge Expansion Joints (Fe-Mn 제진합금을 적용한 교량용 신축이음장치의 진동저감 효과에 관한 연구)

  • Kim, T.H.;Baik, J.H.;Han, D.W.;Kim, J.C.;Baik, S.H.;Yoo, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1019-1023
    • /
    • 2006
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Fe-Mn Damping alloy with a combination of high damping capacity and good mechanical properties can provide attractive technical and economical solutions to problems involving seismic, shock and vibration isolation. We have studied the noise and vibration characteristic of Dampalloy and checked Dampalloy reduced noise about 3.9dB and vibration about 15.9 times as compared conventional material through laboratory research. With this result, we obtained a good possibility of material substitution about the bridge expansion joint

  • PDF

Application of High Damping Alloys for Vibration Reduction in Rail Joint Bar (방진합금을 적용한 철도레일 이음매판의 진동저감 효과에 관한 연구)

  • Baik, S.H.;Kim, J.C.;Han, D.W.;Baik, J.H.;Kim, T.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.570-573
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. In this paper, it showed the noise and vibration characteristic was compared conventional rail joint to improved rail joint(damping alloy) for reducing noise and vibration. Its applicability to rail joint is discussed.

  • PDF