• Title/Summary/Keyword: High Aspect Ratio

Search Result 948, Processing Time 0.031 seconds

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

Effect of Mold Temperature on Injection Molding of Micro-Features with High Aspect Ratio (고세장비 미세형상 사출성형시 금형온도의 영향 고찰)

  • Park, Jung-Min;Do, Bum-Suk;Eom, Hye-Ju;Park, Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1124-1128
    • /
    • 2008
  • Thin-wall injection molding is associated with many advantages, including increased portability, the conserving of materials, and the reduction of the molding cycle times. In the application of the thin-wall molding, a considerable reduction of the effective flow thickness results in filling difficulty. High-frequency induction is an efficient way to overcome this filling difficulty by means of heating the mold surface by electromagnetic induction. The present study applies the induction heating to the injection molding of thinwalled micro structures with high aspect ratio. The feasibility of the proposed heating method is investigated through a numerical analysis. The estimated filling characteristics of the micro-features are investigated with variations of mold temperature and part thickness, of which results are also compared with experimental measurements.

  • PDF

Fabrication of High Aspect Ratio Micro Structure for fine pitch probe production (Fine pitch probe 제작을 위한 고세장비 마이크로 구조물 제작)

  • Lee, S.I.;Kim, W.K.;Pyo, C.R.;Kim, D.Y.;Yang, S.J.;Ko, K.H.;Kim, H.J.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.356-359
    • /
    • 2007
  • Continuing improvements in integrated circuit chip density and functionality have mostly contributed toward a very large-scale integrated circuit(VLSI) and display device. In order to test (pass or fail) all of the high integrated semiconductor chip and display device, fine pitch probes are used. Fine pitch probes are manufactured by electroforming process of a Ni alloy in an electrolytic bath. In this paper, we expect that the electric field in bath with the Finite Element Method and applying the FEM result. So, we can obtained the probes that have high aspect ratio of 10 : 1

  • PDF

Fabrication of Micro Wall with High Aspect Ratio using Iterative Screen Printing

  • Yoon, Seong-Man;Jo, Jeong-Dai;Yu, Jong-Su;Yu, Ha-Il;Kim, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1486-1489
    • /
    • 2009
  • Micro wall is fabricated using iterative screen printing that it is able to fabricate the pattern as low cost, simple process, formation of pattern at large area on the various substrates. In the process of micro wall fabrication using screen printing, the printing result with pressure change in process and improvement of surface roughness using hydrophillic plasma treatment are included. Height of micro wall increase linearly and precision of iteration is very high. Error rate of printed pattern width is very high, but change rate of width is under 10 %. Fabricated micro pattern have minimum width $48.75{\mu}m$ and maximum height $75.45{\mu}m$ with aspect ratio 1.55.

  • PDF

Wake Characteristics of High Angle of Attack and Ground Effect for Low Aspect Ratio Wings using NLVLM (비선형 와류격자법을 이용한 작은 종횡비 날개의 고받음각 및 지면효과 후류 특성 분석)

  • Lee, Seawook
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.37-41
    • /
    • 2014
  • For the analysis of lifting surface at high angle of attack, a Nonlinear Vortex Lattice Method(NLVLM) was used. The NLVLM is intented to compute the interactions between lifting surfaces and separated vertical flow. The lifting surfaces are represented by a lattice of discrete vortex rings. And wakes are represented by families of non-lintersecting, semi-infinite vortex line segments. The image method also used to analyze the ground effect. It is found that vortex lines separated from lifting surfaces represent the separated flows successfully. Although the present method is applied for the rectangular wing and delta wing, extensions can be possible for the arbitrary lifting surfaces. The Present results show good agreement with experimental data.

Systematic influence of wind incident directions on wind circulation in the re-entrant corners of high-rise buildings

  • Qureshi, M. Zahid Iqbal;Chan, A.L.S.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.409-428
    • /
    • 2016
  • The mechanical and aerodynamic effect of building shape plays a dominate role in the pedestrian level wind environment. These effects have been presented in numerous studies and are available in many wind codes. However, most studies have focused on wind flow around conventional buildings and are limited to few wind directions. The present study investigated wind circulation in the re-entrant corners of cross-shaped high-rise buildings from various wind directions. The investigation focused on the pedestrian level wind environment in the re-entrant corners with different aspect ratios of building arrangements. Ninety cases of case study arrangements were evaluated using wind tunnel experimentation. The results show that for adequate wind circulation in the re-entrant corners, building orientations and separations play a critical role. Furthermore, in normal wind incident directions and at a high aspect ratio, poor wind flow was observed in the re-entrant corners. Moreover, it was noted that an optimized building orientation and aspect ratio significantly improved the wind flow in re-entrant corners and through passages. In addition, it was observed that oblique wind incident direction increased wind circulation in the re-entrant corners and through passages.

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매)

  • An, Soyeon;Jeon, Dae-Woo;Hwang, Jonghee;Ra, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.143-148
    • /
    • 2019
  • We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

A Study on Manufacture of Integrated Composite Wing with High Aspect Ratio (고 세장비 일체형 복합재 날개 제작 연구)

  • Joo, Young-Sik;Jun, Oo-Chul;Byun, Kwan-Hwa;Cho, Chang-Min;Han, Jin-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • In this paper, the study for the manufacture of the integrated composite wing is performed. The wing has a pivoting structure and high aspect ratio to increase lift drag ratio. The wing is designed with carbon fiber composite because the wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The number of structural members is decreased by part integration to reduce manufacturing cost and the wing is manufactured with the integrated molding process by an autoclave. The material properties are identified by the coupon tests and the structural strength and stiffness are verified through the component tests.

A Numerical Study on the Characteristics of a Thick Flapped Rudder depending on Various Geometric Parameters using Computational Fluid Dynamics Technique

  • Nguyen, Tien Thua;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • A marine flapped rudder is designed to improve the effective lift generated by the rudder; this also improves the maneuverability of the ship. The flap is a high lift device installed at the trailing edge of the rudder to augment lift. In this paper, the characteristics of a thick flapped rudder are analyzed at a low Reynolds number with various ratios of flap chord length to total chord length and various aspect ratios, based on the computational fluid dynamics technique. The performance of the rudder with respect to lift, drag, and center of pressure are investigated, and the efficient ratio of flap chord length to total chord length and improved aspect ratio are determined. Ed: highlight - or 'superior'. As a case study, the flow on the flapped rudder of an NACA0021 section shape in free stream condition is simulated. The standard k-epsilon turbulence model is used to model the flow around the flapped rudder. The results indicate that the efficient ratio of the flap chord length to total chord length and aspect ratio are 0.3 and 1.4, respectively.