• Title/Summary/Keyword: High Accuracy

Search Result 8,887, Processing Time 0.034 seconds

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer (G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리)

  • Kim, Min-Seong;Koo, Tae-Young;Kim, Ji-Hyoung;Jung, Sueng-Pil;Kim, Bu-Yo;Kwon, Byung Hyuk;Lee, Kwangjae;Kang, Myeonghun;Yang, Jiwhi;Lee, ChulKyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • Quality control methods for the first G-band vapor radiometer (GVR) mounted on a weather aircraft in Korea were developed using the GVR Precipitable Water Vapor (PWV). The aircraft attitude information (degree of pitch and roll) was applied to quality control to select the shortest vertical path of the GVR beam. In addition, quality control was applied to remove a GVR PWV ≥20 mm. It was found that the difference between the warm load average power and sky load average power converged to near 0 when the GVR PWV increased to 20 mm or higher. This could be due to the high brightness temperature of the substratus and mesoclouds, which was confirmed by the Communication, Ocean and Meteorological Satellite (COMS) data (cloud type, cloud top height, and cloud amount), cloud combination probe (CCP), and precipitation imaging probe (PIP). The GVR PWV before and after the application of quality control on a cloudy day was quantitatively compared with that of a local data assimilation and prediction system (LDAPS). The Root Mean Square Difference (RMSD) decreased from 2.9 to 1.8 mm and the RMSD with Korea Local Analysis and Precipitation System (KLAPS) decreased from 5.4 to 4.3 mm, showing improved accuracy. In addition, the quality control effectiveness of GVR PWV suggested in this study was verified through comparison with the COMS PWV by using the GVR PWV applied with quality control and the dropsonde PWV.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Estimation of spatial distribution of snow depth using DInSAR of Sentinel-1 SAR satellite images (Sentinel-1 SAR 위성영상의 위상차분간섭기법(DInSAR)을 이용한 적설심의 공간분포 추정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1125-1135
    • /
    • 2022
  • Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.

Modification and Validation of an Analytical Method for Dieckol in Ecklonia Stolonifera Extract (곰피추출물의 지표성분 Dieckol의 분석법 개선 및 검증)

  • Han, Xionggao;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Oh, Geon;Jin, Heegu;Oh, Hyun-Ji;Kim, Eunjin;Kim, Jongwook;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • This study was to investigate an analytical method for determining dieckol content in Ecklonia stolonifera extract. According to the guidelines of International Conference on Harmonization. Method validation was performed by measuring the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of dieckol using high-performance liquid chromatography-photodiode array. The results showed that the correlation coefficient of calibration curve (R2) for dieckol was 0.9997. The LOD and LOQ for dieckol were 0.18 and 0.56 ㎍/mL, respectively. The intra- and inter-day precision values of dieckol were approximately 1.58-4.39% and 1.37-4.64%, respectively. Moreover, intra- and inter-day accuracies of dieckol were approximately 96.91-102.33% and 98.41-105.71%, respectively. Thus, we successfully validated the analytical method for estimating dieckol content in E. stolonifera extract.

Studies on Changes in the Hydrography and Circulation of the Deep East Sea (Japan Sea) in a Changing Climate: Status and Prospectus (기후변화에 따른 동해 심층 해수의 물리적 특성 및 순환 변화 연구 : 현황과 전망)

  • HOJUN LEE;SUNGHYUN NAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The East Sea, one of the regions where the most rapid warming is occurring, is known to have important implications for the response of the ocean to future climate changes because it not only reacts sensitively to climate change but also has a much shorter turnover time (hundreds of years) than the ocean (thousands of years). However, the processes underlying changes in seawater characteristics at the sea's deep and abyssal layers, and meridional overturning circulation have recently been examined only after international cooperative observation programs for the entire sea allowed in-situ data in a necessary resolution and accuracy along with recent improvement in numerical modeling. In this review, previous studies on the physical characteristics of seawater at deeper parts of the East Sea, and meridional overturning circulation are summarized to identify any remaining issues. The seawater below a depth of several hundreds of meters in the East Sea has been identified as the Japan Sea Proper Water (East Sea Proper Water) due to its homogeneous physical properties of a water temperature below 1℃ and practical salinity values ranging from 34.0 to 34.1. However, vertically high-resolution salinity and dissolved oxygen observations since the 1990s enabled us to separate the water into at least three different water masses (central water, CW; deep water, DW; bottom water, BW). Recent studies have shown that the physical characteristics and boundaries between the three water masses are not constant over time, but have significantly varied over the last few decades in association with time-varying water formation processes, such as convection processes (deep slope convection and open-ocean deep convection) that are linked to the re-circulation of the Tsushima Warm Current, ocean-atmosphere heat and freshwater exchanges, and sea-ice formation in the northern part of the East Sea. The CW, DW, and BW were found to be transported horizontally from the Japan Basin to the Ulleung Basin, from the Ulleung Basin to the Yamato Basin, and from the Yamato Basin to the Japan Basin, respectively, rotating counterclockwise with a shallow depth on the right of its path (consistent with the bottom topographic control of fluid in a rotating Earth). This horizontal deep circulation is a part of the sea's meridional overturning circulation that has undergone changes in the path and intensity. Yet, the linkages between upper and deeper circulation and between the horizontal and meridional overturning circulation are not well understood. Through this review, the remaining issues to be addressed in the future were identified. These issues included a connection between the changing properties of CW, DW, and BW, and their horizontal and overturning circulations; the linkage of deep and abyssal circulations to the upper circulation, including upper water transport from and into the Western Pacific Ocean; and processes underlying the temporal variability in the path and intensity of CW, DW, and BW.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.