• Title/Summary/Keyword: High $K^{+}$-induced contraction

Search Result 120, Processing Time 0.027 seconds

Inhibition of Arterial Myogenic Responses by a Mixed Aqueous Extract of Salvia Miltiorrhiza and Panax Notoginseng (PASEL) Showing Antihypertensive Effects

  • Baek, Eun-Bok;Yoo, Hae-Young;Park, Su-Jung;Chung, Young-Shin;Hong, Eun-Kyung;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • The dried roots of Danshen (Salvia miltiorrhiza) and Sanchi (Panax notoginseng) have been widely used in traditional Chinese medicine for promoting blood circulation as well as various other bodily functions. Here we investigated the effects of a mixture of aqueous extracts of Danshen and Sanchi, named PASEL, on blood pressure and vascular contractility in rats. Orally administered PASEL (62.5 mg/kg and 250 mg/kg, for 5 weeks) lowered the blood pressure of spontaneous hypertensive rats (SHR) but this was not observed in normal Wistar-Kyoto rats (WKR). We then investigated the effects of PASEL on the arterial contraction of the small branches of cerebral arteries (CAs) and large conduit femoral arteries (FAs) in rats. PASEL did not affect high-K (KCI 60 mM)- or phenyleprine (PhE)-induced contracture of FAs. The myogenic response, a reactive arterial constriction in response to increased luminal pressure, of small CA was dose-dependently suppressed by PASEL in SHR as well as control rats. Interestingly, the KCI-induced contraction of small CAs was slowly reversed by PASEL, and this effect was more prominent in SHR than control WKR. PASEL did not inhibit angiotensin-converting enzyme (ACE) activity. These results demonstrated that the antihypertensive effect of PASEL might be primarily mediated by altering the arterial MR, not by direct inhibition of L-type $Ca^{2+}$ channels or by ACE inhibition.

The Action of Ginkgo Bibloba Extract in the Isolated Rabbit Corpus Cavernosum

  • Chung, Woo-Sik;Choi, Young-Deuk;Park, Young-Yo;Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 1995
  • The extract of Ginkgo bibloba (EGb) is a complex mixture of natural products from the Ginkgo leaves and clinically used for the treatment of cerebral and peripheral circulatory disturbances due to its combined activity of several vasoactive principles. In this study we investigated the action of EGb and its mechanism in isolated rabbit corporal smooth muscle to evaluate the possibility of using this material as a pharmacoerecting agent. Strips of rabbit corpus cavernosum were mounted in organ chambers to measure isometric tension. EGb began to exert an relaxing effect at 1 mg/ml in the submaximally precontracted muscle strips with phenylephrine $(PHE,\;5{\times}10^{-6}\;M)$; causing concentration-dependent relaxation with maximal effect at $3{\sim}5\;mg/ml$. That relaxation was partially inhibited by removal of the smooth muscle endothelium or by pretreatment with a NO scavenger, pyrogallol $(10^{-4}\;M)$ or the guanylate cyclase inhibitor, methylene blue $(10^{-4}\;M)$. Pretreatment with EGb (3 mg/ml) inhibited PHE- $(5{\times}10^{-6}\;M)$ or KCI- (20 and 40 mM) induced contraction of muscle strip. In calcium-free high potassium solution EGb depressed the basal tone of the depolarized muscle strip and inhibited calcium-induced contraction when $CaCl_2$ $(10^{-4}\;M)$ was added. These results suggest that EGb relaxes rabbit corpus cavernosal smooth muscle through multiple action mechanisms that include increasing the release of nitric oxide from the corporal sinusoidal endothelium, sequestration of intracytosolic calcium, and maybe a hyperpolarizing action.

  • PDF

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Effects of remifentanil preconditioning on factors related to uterine contraction in WISH cells

  • Kim, Cheul-Hong;Lee, Sang-Hoon;Kim, Eun-Jung;Ahn, Ji-Hye;Choi, Eun-Ji;Yoon, Ji-Uk;Choi, In-Seok
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.6
    • /
    • pp.343-351
    • /
    • 2019
  • Background: Preterm labor and miscarriage may occur in stressful situations, such as a surgical operation or infection during pregnancy. Pharyngeal and buccal abscess and facial bone fractures are inevitable dental surgeries in pregnant patients. Remifentanil is an opioid analgesic that is commonly used for general anesthesia and sedation. Nonetheless, no study has investigated the effects of remifentanil on amniotic epithelial cells. This study evaluated the effects of remifentanil on the factors related to uterine contraction and its mechanism of action on amniotic epithelial cells. Methods: Amniotic epithelial cells were preconditioned at various concentrations of remifentanil for 1 h, followed by 24-h lipopolysaccharide (LPS) exposure. MTT assays were performed to assess the cell viability in each group. The effects of remifentanil on factors related to uterine contractions in amniotic epithelial cells were assessed using a nitric oxide (NO) assay, western blot examinations of the expression of nuclear factor-kappa B (NF-κB), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2), and RT-PCR examinations of the expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α). Results: Remifentanil did not affect viability and nitric oxide production of amniotic epithelial cells. Western blot analysis revealed that remifentanil preconditioning resulted in decreased expressions of NF-κB and PGE2 in the cells in LPS-induced inflammation, and a tendency of decreased COX2 expression. The results were statistically significant only at high concentration. RT-PCR revealed reduced expressions of IL-1β and TNF-α. Conclusions: Preconditioning with remifentanil does not affect the viability of amniotic epithelial cells but reduces the expression of factors related to uterine contractions in situations where cell inflammation is induced by LPS, which is an important inducer of preterm labor. These findings provide evidence that remifentanil may inhibit preterm labor in clinical settings.

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.

Calcium Channel Blocking and Phosphodiesterase Inhibitory Action of GS386, a Dihydroisoquinoline Derivative, in Isolated Rat Trachea (흰쥐 기관평활근에 대한 GS 386의 칼슘억제 및 포스포디에스테라제 억제 작용)

  • Chang, Ki-Churl;Lee, Hoi-Young;Kang, Young-Jin;Koo, Eui-Bon
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.373-380
    • /
    • 1996
  • Recently we reported that GS 386, 1-(4'-methoxybenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline, inhibited amplitude of the $Ca^{2+}$ current by reducing the probability of $Ca^{2+}$ channel opening without changing channel kinetics in isolated rabbit atrial myocyte. In the present study, further investigation of the mechanism of action of GS 386 was performed using isolated rat trachealis. GS 386 concentration-dependently relaxed rat trachealis contracted by carbachol $(0.3{\mu}M)$ and high $K^+$(65.4 mM) with $IC_{50}$ 5.24 and 5.67 ${\mu}M$, respectively. Verapamil inhibited more effectively the high $K^+-contracted$ tissues than those with carbachol in the rat trachealis muscle. In $Ca^{2+}-free$ media, $Ca^{2+}-induced$ contraction was inhibited by GS 386. Furthermore, high concentration of GS 386 $(100{\mu}M)$ but not verapamil, attenuated a phasic contraction induced not only by carbachol but also caffeine, indicating that GS386 can enter into the cytoplasm where it may exert secondary actions on internal sites of the muscle, such as sarcoplasmic reticulum. Moreover, GS 386 showed verapamil-resistant component of relaxation and increased cAMP levels in rat trachal smooth muscle. These results suggest that the mechanism of action of GS 386 attributes to not only $Ca^{2+}$ antagonistic action but also weak phosphodiesterase inhibitory action.

  • PDF

Effect of Magnesium on the Contractility of the Isolated Guinea-Pig Aortic and Rat Smooth Muscles (마그네슘이온이 적출한 기니피그 대동맥평활근과 흰쥐 자궁평활근의 수축성에 미치는 효과에 관한 연구)

  • Ahn, Hyuk;Hwang, Sang-Ik
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.452-464
    • /
    • 1990
  • It is well known that extracellular Calcium plays a very important role in several steps of smooth muscle excitability and contractility, and there have been many concerns about factors influencing the distribution of extracellular Ca++ and the Ca++ flux through the cell membrane of the smooth muscle. Based on the assumption that Mg++ may also play an important role in the excitation and contraction processes of the smooth muscle by taking part in affecting Ca++ distribution and flux, many researches are being performed about the exact role of Mg++, especially in the vascular smooth muscle. But yet the effect of Mg++ in the smooth muscle activity is not clarified, and moreover the mechanism of Mg++ action is almost completely unknown. Present study attempted to clarify the effect of Mg++ on the excitability and contractility in the multiunit and unitary smooth muscle, and the mechanism concerned in it. The preparations used were the guinea-pig aortic strip as the experimental material of the multiunit smooth muscle and the rat uterine strip as the one of the unitary smooth muscle. The tissues were isolated from the sacrificed animal and were prepared for recording the isometric contraction. The effects of Mg++ and Ca++ were examined on the electrically driven or spontaneous contraction of the preparations. And the effects of these ions were also studied on the K+ or norepinephrine contracture. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% 02 and kept at 35oC. The results obtained were as follows: 1] Mg++ suppressed the phasic contraction induced by electrical field stimulation dose-dependently in the guinea-pig aortic strip, while the high concentration of Ca++ never recovered the decreased tension. These phenomena were not changed by the a - or b - adrenergic blocker. 2]Mg++ played the suppressing effect on the low concentration [20 and 40 mM] of K+-contracture in the aortic muscle, but the effect was not shown in the case of 100mM K+-contracture. 3] Mg++ also suppressed the contracture induced by norepinephrine in the aortic preparation. And the effect of Mg++ was most prominent in the contracture by the lowest [10 mM] concentration of norepinephrine. 4] In both the spontaneous and electrically driven contractions of the uterine strip, Mg++ decreased the amplitude of peak tension, and by the high concentration of Ca++ the amplitude of tension was recovered unlike the aortic muscle. 5] The frequency of the uterine spontaneous contraction increased as the [Ca++] / [Mg++] ratio increased up to 2, but the frequency decreased above this level. 6] Mg++ decreased the tension of the low[20 and 40mM] K+-contracture in the uterine smooth muscle, but the effect did not appear in the 100mM K+-contracture. From the above results, the following conclusion could be made. 1] Mg++ seems to suppress the contractility directly by acting on the smooth muscle itself, besides through the indirect action on the nerve terminal, in both the aortic and uterine smooth muscles. 2] The fact that the depressant effect of Mg++ on the K+-contracture is in inverse proportion to an increase of K+ concentration appears resulted from the extent of the opening state of the Ca++ channel. 3] Mg++ may play a depressant role on both the potential dependent and the receptor-operated Ca++ channels. 4] The relationship between the actions of Mg++ and Ca++ seems to be competitive in uterine muscle and non-competitive in aortic strip.

  • PDF

Differential Mechanisms of Vascular Relaxation between Alcohol Steamed Rhei Tangutici Radix et Rhizoma and Rhei Tangutici Radix et Rhizoma (당고특대황(唐古特大黃)의 주증(酒蒸) 여부가 혈관이완 기전에 미치는 영향)

  • Yang, Jae-Kyung;Shin, Heung-Mook
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.17-21
    • /
    • 2010
  • Objectives : The aim of this study was to evaluate the differential mechnism of vasodilation of alcohol steamed Rhei Tangutici Radix et Rhizoma. (ART) and Rhei Tangutici Radix et Rhizoma. (RT) in rat thoracic aorta. Methods : Rat aortic ring preparations were mounted in organ baths with oxygenated (95% $O_2$-5% $CO_2$) Krebs-Ringer bicarbonate solutions at $37{\pm}0.5^{\circ}C$ and subjected to contractions or relaxations. Results : ART exerted vasorelaxation on phenylephrine(PE)-induced contraction in a dose dependent manner. Vasorelaxation effects of ART and RT were endothelium-independent. In the $Ca^{2+}$-free high KCl (60 mM) baths, the contraction of aortic rings induced by accumulative addition of $Ca^{2+}$ (0.3-10.0 mM) was significantly reduced by pre-treatment with both ART and RT for 10 min. The magnitude of vasodilatation was biggerin ART. Moreover, verapamil ($0.001{\mu}M$) and diltiazem ($10{\mu}M$), voltage operative $Ca^{2+}$channel blockers, attenuated the relaxation effect of ART but not that of RT. In the absence of extracellular $Ca^{2+}$, pre-incubation of the aortic rings with RT ($1.0mg/m{\ell}$) significantly reduced the contraction caused by PE but not that of ART. $K^+$ channel inhibitors such as glibenclamide (Gli, $10^{-5}M$), tetraethylammonium (TEA, 1 mM) and 4-aminopyridine (4-AP, 0.2 mM) significantly reduced the ART's vasorelaxation efficacy, but not that of RT. However, the relaxation effects of ART and RT were not inhibited by pre-treatment with indomethacin ($10^{-5}M$), and atropine ($10^{-6}M$). Conclusions : These results suggest that the endothelium-independent relaxation is due to inhibition of $Ca^{2+}$ influx via the suppression of $Ca^{2+}$ release from intracelluar store in RT but via both voltage operative $Ca^{2+}$channel blockage and $K^+$ channel activation in ART.

The Effects of Magnoliae officinalis Cortex and Machili thunbergii Cortex on Small Intestinal Motility (후박(厚朴)과 토후박(土厚朴)의 소장운동에 미치는 영향에 대한 연구)

  • Lee, Kyung-Jin;Park, Geun-Yong;Park, Gyu-Ha;Liu, Kwang-Hyeon;Kim, Tae-Wan;Ham, In-Hye;Bu, Young-Min;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.75-81
    • /
    • 2011
  • Objectives : Magnoliae officinalis Cortex (MOC) has been used in traditional medicine for digestive diseases in Korea, China and Japan. However, Machili thunbergii Cortex (MTC) also has been used as a substitute of MOC in Korea sometimes. Thus, this study was carried out to investigate and compare the effects of MOC and MTC on intestinal motility of isolated small intestinal segments from ICR mouse. Methods : Changes in motility were recorded via isometric transducers connected to a data acquisition system and amplitude, frequency and area under the curve (AUC) of intestinal spontaneous phasic contraction were compared. Results : The MOC extracts ($1{\sim}{\mu}g/mL$) dose-dependently decreased both amplitudes and frequencies of the spontaneous phasic contraction, but not AUC. However, high concentration of MOC (100 ${\mu}g$/mL) evoked tonic contraction. And it was not inhibited by tetrodotoxin, a sodium channel blocker, and nifedipine, a L-type $Ca^{2+}$ channel antagonist. These results suggested that MOC (100 ${\mu}g$/mL)-induced tonic contraction is not mediated by nerve or L-type $Ca^{2+}$ channel. On the other hand, the MTC extracts dose-dependently inhibited amplitude and AUC, but not the frequency. Conclusions : Although both MOC and MTC affected intestinal motility, MOC is more effective on intestinal motility than MTC. And MOC has been used as a traditional medicine for a long time but not MTC. Thus, we suggested that MTC should not be used in Korea as a substitute of MOC and MOC might be useful traditional medicine for gastrointestinal disease. The mechanism of MOC is still remained to elucidate.

Effect of Cumambrin A on the Relaxation of Rat Aorta (흰쥐에서 Cumambrin A의 대동맥 이완작용)

  • Hong, Yong-Geun;Yang, Min-Suk;Pak, Yun-Bae
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.1 s.140
    • /
    • pp.17-20
    • /
    • 2005
  • We previously reported that the exogenous administration of cumambrin A, a sesquiterpene lactone from the dried flowers of Chrysanthemum boreale Makino has a pharmacological effect on normalization of blood pressure in the spontaneously hypertensive rats (SHR). In the present study, we further investigated the effect of cumambrin A on the relaxation of phenylephrine-induced precontracted rat aortic artery rings. The potency of cumambrin A was than compared to verapamil, a well known $Ca^{2+}-channel$ blocker. The results demonstrate that the isolated rat aortic arteries are relaxed to basal tension at a concentration of $5{\times}10^{-5}\;M$ cumambrin A treatment. The results also show that the phenylephrine-induced contraction is inhibited by a pretreatment of cumambrin A. Co-treatment of cumambrin A and verapamil showed a strong synergetic effect on the relaxation of rat aortic artery rings. Thus, these data demonstrate that cumambrin A is a potent relaxant of rat aortic smooth muscle and suggest that cumambrin A modulates intracellular or extracellular $Ca^{2+}$ mobilization.