• Title/Summary/Keyword: High/Low Temperature Test

Search Result 1,001, Processing Time 0.033 seconds

A Design and Implementation of the Temperature Testing Equipment Malfunction Monitoring System Using Arduino (아두이노를 이용한 온도시험 장비 오동작 감시 시스템 설계 및 구현)

  • Yoon, Myung-Seob;Park, Koo-Rack;Ko, Chang-Bae
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.317-323
    • /
    • 2016
  • This paper suggests a system that can detect malfunctions of the temperature testing equipment, and then notify this information to surroundings using arduino. Precision electronics need a test under extremely high/low temperature using temperature called a chamber. If this chamber have a malfunction situation, the precision electronics under test is damaged and scrapped. Especially when the temperature test is automatically conducted at night with no representative, this system monitors the actual temperature of the tested product in real-time by attaching a temperature sensor to the inside of the test equipment. In case when it is out of the temperature range set up by the tester, the damage to high-priced products can be prevented in the condition of extremely high/low temperature, by turning off the power of the temperature testing equipment, and also notifying this information to the worker at night-time. Regardless of the equipment manufacturers, proposed system in this paper can be applied to all kind of temperature testing equipments, and it can be also produced for low cost.

Material Development of Eco Water Tank with High Density Polyethylene and Low-temperature Concrete (친환경 저수조를 위한 고밀도 폴리에틸렌과 저열성 콘크리트 합성재료 개발)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • The purpose of this study is to evaluate the new eco water tank which is made of high density polyethylene and concrete with low temperature cement. The strength and failure mode of eco water tank was examined through tensile test with mixture of concrete and HDPE, temperature monitoring for various kind of concrete, admixture contains etc. The strength and failure mode were examined through tensile test with mixture of concrete and HDPE, temperature monitering for different kinds of concrete, strength test with different admixtures etc. It was found that shear connector between concrete and HDPE effects significantly contributed to the combined structures. ㄱ type shear connector results in tensile strength of up to 40% compared to that of V type shear connector. Based on test result, the new eco composite tank improved the stability and safety the old one and demonstrated the applicability and capability.

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Construction of a High-Altitude Ignition Test Facility for a Small Gas-turbine Combustor (소형 가스터빈 연소기 고공환경 점화 시험 설비 구축 및 검증 실험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Kim, Ki-Woo;Kim, Bo-Yean;Ko, Young-Sung;Kim, Sun-Jin;Kim, Hyung-Mo;Jung, Yong-Wun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • A small high altitude test facility has been developed to investigate ignition performance of a small gas-turbine combustor under high altitude conditions. Supersonic diffusers and a heat exchanger were used to perform a low pressure and a low temperature condition, respectively. Experimental results showed that the low pressure environment could be controlled by upstream pressure of primary nozzle flow and low temperature environment by mixture ratio of cooled air and ambient air. Ignition performance tests were performed to verify the performance of the facility under simulated high altitude conditions. Conclusively, it was proven that the test facility could be used for ignition performance test of a small gas-turbine combustor under high altitude condition of approximately 6,100m.

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

Development of High-Frequency Induction Heating Method Using Adhesive Waterproofing Sheet Laminated with Aluminum Sheet (알루미늄 박판 점착 복합 방수시트를 이용한 고주파 유도가열 방수공법 개발 평가 연구)

  • Kim, Yun Ho;Kim, Dong Bum;Park, Jin-Sang;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.111-114
    • /
    • 2011
  • Waterprooping Method with sheet need to study technology and multilateral verification considering the arctic conditions as low temperature and humidity, which is the result only considered of material aspects without environmental condition in construction But there are no measures up until now. To solve this problem by using high frequency induction heating method developed waterproof sheets, cold (5 ℃ or less) can be applied in a more stable environment, water-resistant materials and construction methods were studied for development. The results of the test showed that high frequency induction heating method is effective for usability in low temperature condition and securement of proper quality than existing Waterprooping Method with sheet need.

  • PDF

An Experimental Study on the Performance of a Sea Water Heat Source Cascade Heat Pump (해수열원 캐스케이드 열펌프시스템의 운전 특성에 관한 실험적 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Park, Seong-Ryong;Ra, Ho-Sang;Lee, Jea-Hun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1969-1973
    • /
    • 2007
  • The purpose of this study is to investigate the performance of a sea water heat source cascade heat pump system. R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

A Study on the Operating Performance of a Cascade Heat Pump (캐스케이드 열펌프시스템의 운전 특성에 관한 연구)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jea-Hun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame (메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF