• Title/Summary/Keyword: Hierarchical machine learning

Search Result 62, Processing Time 0.028 seconds

Continuous Multiple Prediction of Stream Data Based on Hierarchical Temporal Memory Network (계층형 시간적 메모리 네트워크를 기반으로 한 스트림 데이터의 연속 다중 예측)

  • Han, Chang-Yeong;Kim, Sung-Jin;Kang, Hyun-Syug
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

Hierarchical Correlation-based Anomaly Detection for Vision-based Mask Filter Inspection in Mask Production Lines (마스크 생산 라인에서 영상 기반 마스크 필터 검사를 위한 계층적 상관관계 기반 이상 현상 탐지)

  • Oh, Gunhee;Lee, Hyojin;Lee, Heoncheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.277-283
    • /
    • 2021
  • This paper addresses the problem of vision-based mask filter inspection for mask production systems. Machine learning-based approaches can be considered to solve the problem, but they may not be applicable to mask filter inspection if normal and anomaly mask filter data are not sufficient. In such cases, handcrafted image processing methods have to be considered to solve the problem. In this paper, we propose a hierarchical correlation-based approach that combines handcrafted image processing methods to detect anomaly mask filters. The proposed approach combines image rotation, cropping and resizing, edge detection of mask filter parts, average blurring, and correlation-based decision. The proposed approach was tested and analyzed with real mask filters. The results showed that the proposed approach was able to successfully detect anomalies in mask filters.

Color & Texture Attribute Classification System of Fashion Item Image for Standardizing Learning Data in Fashion AI (패션 AI의 학습 데이터 표준화를 위한 패션 아이템 이미지의 색채와 소재 속성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.354-368
    • /
    • 2020
  • Accurate and versatile image data-sets are essential for fashion AI research and AI-based fashion businesses based on a systematic attribute classification system. This study constructs a color and texture attribute hierarchical classification system by collecting fashion item images and analyzing the metadata of fashion items described by consumers. Essential dimensions to explain color and texture attributes were extracted; in addition, attribute values for each dimension were constructed based on metadata and previous studies. This hierarchical classification system satisfies consistency, exclusiveness, inclusiveness, and flexibility. The image tagging to confirm the usefulness of the proposed classification system indicated that the contents of attributes of the same image differ depending on the annotator that require a clear standard for distinguishing differences between the properties. This classification system will improve the reliability of the training data for machine learning, by providing standardized criteria for tasks such as tagging and annotating of fashion items.

Phrase-Chunk Level Hierarchical Attention Networks for Arabic Sentiment Analysis

  • Abdelmawgoud M. Meabed;Sherif Mahdy Abdou;Mervat Hassan Gheith
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.120-128
    • /
    • 2023
  • In this work, we have presented ATSA, a hierarchical attention deep learning model for Arabic sentiment analysis. ATSA was proposed by addressing several challenges and limitations that arise when applying the classical models to perform opinion mining in Arabic. Arabic-specific challenges including the morphological complexity and language sparsity were addressed by modeling semantic composition at the Arabic morphological analysis after performing tokenization. ATSA proposed to perform phrase-chunks sentiment embedding to provide a broader set of features that cover syntactic, semantic, and sentiment information. We used phrase structure parser to generate syntactic parse trees that are used as a reference for ATSA. This allowed modeling semantic and sentiment composition following the natural order in which words and phrase-chunks are combined in a sentence. The proposed model was evaluated on three Arabic corpora that correspond to different genres (newswire, online comments, and tweets) and different writing styles (MSA and dialectal Arabic). Experiments showed that each of the proposed contributions in ATSA was able to achieve significant improvement. The combination of all contributions, which makes up for the complete ATSA model, was able to improve the classification accuracy by 3% and 2% on Tweets and Hotel reviews datasets, respectively, compared to the existing models.

A Study on Simplification of Machine Learning Model (기계학습 모델의 간략화 방법에 대한 연구)

  • Lee, Gye-Sung;Kim, In-Kook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2016
  • One of major issues in machine learning that extracts and acquires knowledge implicit in data is to find an appropriate way of representing it. Knowledge can be represented by a number of structures such as networks, trees, lists, and rules. The differences among these exist not only in their structures but also in effectiveness of the models for their problem solving capability. In this paper, we propose partition utility as a criterion function for clustering that can lead to simplification of the model and thus avoid overfitting problem. In addition, a heuristic is proposed as a way to construct balanced hierarchical models.

Velocity Dispersion Bias of Galaxy Groups classified by Machine Learning Algorithm

  • Lee, Youngdae;Jeong, Hyunjin;Ko, Jongwan;Lee, Joon Hyeop;Lee, Jong Chul;Lee, Hye-Ran;Yang, Yujin;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2019
  • We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.

  • PDF

Field Test of Automated Activity Classification Using Acceleration Signals from a Wristband

  • Gong, Yue;Seo, JoonOh
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.443-452
    • /
    • 2020
  • Worker's awkward postures and unreasonable physical load can be corrected by monitoring construction activities, thereby increasing the safety and productivity of construction workers and projects. However, manual identification is time-consuming and contains high human variance. In this regard, an automated activity recognition system based on inertial measurement unit can help in rapidly and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be used to train classifiers for automatically categorizing activities. However, input acceleration data are extracted either from designed experiments or simple construction work in previous studies. Thus, collected data series are discontinuous and activity categories are insufficient for real construction circumstances. This study aims to collect acceleration data during long-term continuous work in a construction project and validate the feasibility of activity recognition algorithm with the continuous motion data. The data collection covers two different workers performing formwork at the same site. An accelerator, as well as portable camera, is attached to the worker during the entire working session for simultaneously recording motion data and working activity. The supervised machine learning-based models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar installation actions.

  • PDF

Re-anonymization Technique for Dynamic Data Using Decision Tree Based Machine Learning (결정트리 기반의 기계학습을 이용한 동적 데이터에 대한 재익명화기법)

  • Kim, Young Ki;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In recent years, new technologies such as Internet of Things, Cloud Computing and Big Data are being widely used. And the type and amount of data is dramatically increasing. This makes security an important issue. In terms of leakage of sensitive personal information. In order to protect confidential information, a method called anonymization is used to remove personal identification elements or to substitute the data to some symbols before distributing and sharing the data. However, the existing method performs anonymization by generalizing the level of quasi-identifier hierarchical. It requires a higher level of generalization in case where k-anonymity is not satisfied since records in data table are either added or removed. Loss of information is inevitable from the process, which is one of the factors hindering the utility of data. In this paper, we propose a novel anonymization technique using decision tree based machine learning to improve the utility of data by minimizing the loss of information.

Machine Learning-Based Transactions Anomaly Prediction for Enhanced IoT Blockchain Network Security and Performance

  • Nor Fadzilah Abdullah;Ammar Riadh Kairaldeen;Asma Abu-Samah;Rosdiadee Nordin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1986-2009
    • /
    • 2024
  • The integration of blockchain technology with the rapid growth of Internet of Things (IoT) devices has enabled secure and decentralised data exchange. However, security vulnerabilities and performance limitations remain significant challenges in IoT blockchain networks. This work proposes a novel approach that combines transaction representation and machine learning techniques to address these challenges. Various clustering techniques, including k-means, DBSCAN, Gaussian Mixture Models (GMM), and Hierarchical clustering, were employed to effectively group unlabelled transaction data based on their intrinsic characteristics. Anomaly transaction prediction models based on classifiers were then developed using the labelled data. Performance metrics such as accuracy, precision, recall, and F1-measure were used to identify the minority class representing specious transactions or security threats. The classifiers were also evaluated on their performance using balanced and unbalanced data. Compared to unbalanced data, balanced data resulted in an overall average improvement of approximately 15.85% in accuracy, 88.76% in precision, 60% in recall, and 74.36% in F1-score. This demonstrates the effectiveness of each classifier as a robust classifier with consistently better predictive performance across various evaluation metrics. Moreover, the k-means and GMM clustering techniques outperformed other techniques in identifying security threats, underscoring the importance of appropriate feature selection and clustering methods. The findings have practical implications for reinforcing security and efficiency in real-world IoT blockchain networks, paving the way for future investigations and advancements.