최근 교육분야에 IT의 활용이 증가하고 이를 통한 학습결과 예측에 대한 연구가 진행되고 있다. 본 연구에서는 학습분석을 참고하여 학습결과에 영향을 미칠 수 있는 학습활동 데이터를 수집하였다. 조사에 참여한 학생은 1062명으로, 조사는 2018년 10월부터 12월까지 충청남도 소재의 4년제 종합 사립대학인 A대학에서 진행되었다. 먼저 기계 학습의 예측 변인들의 타당성 확보를 위하여 학습결과에 대한 개인·학업·행동요인으로 모형을 구성하여 위계적 회귀 분석을 실시하였다. 위계적 회귀 분석의 모형이 유의하였고, 단계별로 설명력(R2)이 증가하는 것으로 나타나 투입된 변수들이 적절한 것으로 나타났다. 또한 기계학습의 선형 회귀분석방법을 통해 투입한 학습활동 변수가 학습 결과를 얼마나 예측할 수 있는지 확인하였으며, 오차율은 약 8.4%로 수집되었다.
International Journal of Advanced Culture Technology
/
제6권4호
/
pp.262-265
/
2018
Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.
공작기계 상태 진단은 기계의 상태를 자동으로 감지하는 프로세스이다. 실제로 가공의 효율과 제조공정에서 제품의 품질은 공구 상태에 영향을 받으며 마모 및 파손된 공구는 공정 성능에 보다 심각한 문제를 일으키고 제품의 품질 저하를 일으킬 수 있다. 따라서 적절한 시기에 공구가 교체될 수 있도록 공구 마모 진행 및 공정 중 파손 방지 시스템 개발이 필요하다. 본 논문에서는 공구의 적절한 교체 시기 등을 진단하기 위해 딥러닝 기반의 계층적 컨볼루션 신경망을 이용하여 5가지 공구 상태를 진단하는 방법을 제안한다. 기계가 공작물을 절삭할 때 발생하는 1차원 음향 신호를 주파수 기반의 전력스펙트럼밀도 2차원 영상으로 변환하여 컨볼루션 신경망의 입력으로 사용한다. 학습 모델은 계층적 3단계를 거쳐 5가지 공구 상태를 진단한다. 제안한 방법은 기존의 방법과 비교하여 높은 정확도를 보였고, 실시간 연동을 통해 다양한 공작기계를 모니터링할 수 있는 스마트팩토리 고장 진단 시스템에 활용할 수 있을 것이다.
다중 작업 학습 은 여러 관련 작업들 사이에서 정보를 공유하며 동시에 학습하는 기계 학습에서 널리 사용되는 방법론이다. 본 논문에서는, 동일한 주요 작업(main task) 하에 속한 하위 작업(sub task)들의 계층적 구조를 고려하며 다중 작업 학습을 수행하기 위한 HiSS (hierarchical multi-task learning with self-supervised auxiliary task)라는 새로운 계층적 다중 작업 학습 방법론을 제안한다. 해당 방법론은 하위 작업을 해결하기 위한 표현 벡터를 학습하기 위해 전역적 공유층, 지역적 공유층, 작업 별 특정층을 활용하는 계층적 구조를 가진다. 또한, 제안한 방법론은 계층적 다중 작업 학습을 주요 과제로 하고, 자기 지도 학습을 보조 과제로 사용하여 학습을 동시에 진행한다. 이는 레이블 없이 입력 데이터만을 활용하여 획득한 군집 레이블을 보조 분류 태스크의 가상 레이블로 사용함으로써, 레이블이 없는 데이터로부터도 추가적인 정보를 획득하고자 함이다. 제안된 접근 방식은 AI 동반 로봇이 수집한 노인 개인의 사용자 정보와 활동 로그로 구성된 효돌 데이터를 사용하여 검증되었으며, 시간대와 월을 기반으로 응급 호출을 예측한다. HiSS는 작업의 수에 관계없이 단일모델만을 필요로 하여 작업에 따라 개별 모델을 사용하는 기존의 기계 학습 알고리즘보다 더 효율적이고, 다양한 메트릭을 사용하여 분류 작업에서 우수한 성능을 확인하였다. 해당 알고리즘에 대한 소스 코드는 다음링크에서 확인할 수 있다: https://github.com/seunghan96/HiSS.
최근, 컴퓨터 분야의 기계 학습(Machine Learning)과 딥러닝(Deep Learning) 등 컴퓨터 관련 학습이 각광을 받고 있다. 이들은 인공 신경망(Artificial Neural Network)을 이용하여 가장 하위 레벨로부터 학습을 시작하여, 최상위 레벨까지 그 결과를 전달하여 최종 결과를 산출하는 방식이다. 하위레벨로부터의 체계적인 학습을 통한 효과적인 성장 및 교육 방안에 대한 연구는 다양한 분야에서 이루어지고 있으나, 체계적인 규칙과 방법에 기반한 모델은 찾아보기가 힘들다. 이에, 본 논문에서는 성장 및 융합 모델인, TNT 모델(Transitive Nested Triangle Model)을 처음으로 제안한다. 제안하는 모델은 기하학적인 형태를 통해 형성된 각 기능들이 유기적 계층 관계를 형성하여, 상위로 성장 및 융합하면서, 그 결과가 반복 사용되는 순환적 재귀 모델이다. 즉, '수평적 형제 병합에 이은 상위로의 융합(Horizontal Sibling Merges and Upward Convergence)'의 분석적 방법이다. 이러한 모델은 공학, 디지털공학, 인문학, 예술학 등에 모두 적용될 수 있는 기본기적 이론으로, 본 연구에서는 제안하는 TNT 모델을 설명하는 것에 그 초점을 둔다.
"Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.
IEIE Transactions on Smart Processing and Computing
/
제3권6호
/
pp.366-371
/
2014
This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.
본 연구는 3D 스켈레톤 데이터를 활용하여 머신러닝 및 딥러닝 모델을 통해 동작 인식을 수행하고, 모델 간 분류 성능 차이를 비교 분석하였다. 데이터는 NTU RGB+D 데이터의 정면 촬영 데이터로 40명의 참가자가 수행한 60가지 동작을 분류하였다. 머신러닝 모델로는 선형판별분석(LDA), 다중 클래스 서포트 벡터 머신(SVM), 그리고 랜덤 포레스트(RF)가 있으며, 딥러닝 모델로는 RNN 기반의 HBRNN (hierarchical bidirectional RNN) 모델과 GCN 기반의 SGN (semantics-guided neural network) 모델을 적용하였다. 각 모델의 분류 성능을 평가하기 위해 40명의 참가자별로 교차 검증을 실시하였다. 분석 결과, 모델 간 성능 차이는 동작 유형에 크게 영향을 받았으며, 군집 분석을 통해 각 동작에 대한 분류 성능을 살펴본 결과, 인식이 비교적 쉬운 큰 동작에서는 머신러닝 모델과 딥러닝 모델 간의 성능 차이가 유의미하지 않았고, 비슷한 성능을 나타냈다. 반면, 손뼉치기나 손을 비비는 동작처럼 정면 촬영된 관절 좌표만으로 구별하기 어려운 동작의 경우, 딥러닝 모델이 머신러닝 모델보다 관절의 미세한 움직임을 인식하는 데 더 우수한 성능을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1704-1720
/
2020
Recognizing food from photographs presents many applications for machine learning, computer vision and dietetics, etc. Recent progress of deep learning techniques accelerates the recognition of food in a great scale. We build a hierarchical structure composed of deep CNN to recognize and classify food from photographs. We build a dataset for Korean food of 18 classes, which are further categorized in 4 major classes. Our hierarchical recognizer classifies foods into four major classes in the first step. Each food in the major classes is further classified into the exact class in the second step. We employ DenseNet structure for the baseline of our recognizer. The hierarchical structure provides higher accuracy and F1 score than those from the single-structured recognizer.
Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.